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Contributi  Establish theoretical connections: The Lucas & Kanade Algorithm (LK) <t==> Supervised Descent Method (SDM)
UL B UER . The Conditional LK Algorithm: efficient aligner which achieves comparable performance with little training data

« Aligns a source image Z against a template image 7 by SDM « Learns the appearance-geometry linear relationship from
minimizing their appearance error synthetically generated data S = {Ap,,,Z,(p. © Ap,)}._,
min || Z(p) — ’T(Ap)Hg * Linear regressors are tr_alned from independently
Ap sampled data per iteration
1st-order Taylor approximation ‘
W0 | Training: min > | Ap, — R[Z,(pn 0 Ap,) — T(0)]I;
min Z(p)—T(0)—VT(0) 3 —~Ap nes
P P 2 * Prediction of the geometric displacement is learned
solve ..
conditioned on the appearance
OW(x;0)\" _
Ap = | VT(0) P Z(p) — T7(0)] Evaluation: Ap =R|[Z(p) — T(0)]

Similarity « Both assume a linear relationship between appearance and geometry \M

* Solve for geometric updates iteratively until convergence is reached
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. predefined .
image => 2N degrees of freedom in R =>» PN degrees of freedom in R
radients
gVI(X:) fits Ap by trying to synthesize Z(p) — 7 (0) predicts Ap conditioned on Z(p) — 7 (0)
~ classically taker.v&a e Pixel iIndependence assumption e Full dependency across pixels
finite differencing e Generative appearance synthesis e Conditional learning objective

" » Learn the image gradients V7 (0) conditioned on the appearance
Conditional LK =9 a( ) ,r PP -
« Final regressor: R = (V’T(O) W(,gx’ 0)) [ I
e Conditional learning objective D min || 5| — (

: . . VvVT(0) N
e Pixel iIndependence assumption
 Warp swapping property:
Geometric warp functions can be swapped and combined with the Ap VT(0)
conditional image gradients V7 (0) to form another series of linear regressors 2N degrees of freedom in R

* Non-linear least squares problem

Experiments @ Visualization of V7 (0)
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Warp Swapping Applications Similar results for different warps, feature images, examples/iteration, and test perturbations
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