Chen-Hsuan Lin

Research Scientist @ NVIDIA Research

Address: NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara, CA 95051, USA E-mail: chenhsuanl@nvidia.com • Website: https://chenhsuanlin.bitbucket.io/ • Phone: (412) 961-4453

Research Interests

Computer vision – 3D reconstruction, view synthesis, neural rendering **Deep learning** – self-supervised learning, generative modeling

Education

Carnegie Mellon University

Ph.D. in Robotics (School of Computer Science)

- Advisor: Simon Lucey
- Recipient of NVIDIA Graduate Fellowship (2019)
- Thesis: Learning 3D Registration and Reconstruction from the Visual World
- Thesis committee: Simon Lucey (chair), Deva Ramanan, Abhinav Gupta, Andrea Vedaldi

Carnegie Mellon University

M.S. in Robotics (School of Computer Science)

- Advisor: Simon Lucey
- Thesis: The Conditional Lucas & Kanade Algorithm

National Taiwan University

- **B.S.** in Electrical Engineering
 - Advisor: Homer H. Chen

Research Experiences

NVIDIA Research

Research Scientist

- Manager: Ming-Yu Liu
- Research in 3D reconstruction, 3D generation, and neural rendering [1][2]
- Co-lead in technical development of NVIDIA's text-to-3D generative AI service

Carnegie Mellon University

Graduate Research Assistant

- Advisor: Simon Lucey
- Learning registration and reconstruction of neural 3D scene representations [3]
- Self-supervised 3D shape reconstruction via differentiable and neural rendering [4] [9]
- Non-rigid 3D structure recovery from 2D keypoints of single objects [5][12]
- Structured optimization of image registration for visual tracking and recognition [8] [11] [13]
- Dense 3D reconstruction of faces from 2D self-captured monocular videos

Facebook AI Research (Meta AI)

Research Intern

- Mentors: Kaiming He, Georgia Gkioxari, Justin Johnson
- Learning 3D representations for improving 2D object detection systems

Pittsburgh, PA, USA Aug. 2017 – Jun. 2021

Pittsburgh, PA, USA Aug. 2014 – Aug. 2016

Taipei, Taiwan Sep. 2009 – Jun. 2013

Santa Clara, CA, USA Aug. 2021 – present

Pittsburgh, PA, USA Sep. 2014 – Jun. 2021

Menlo Park, CA, USA May 2019 – Aug. 2019

Adobe Research Seattle, WA, USA **Research Intern** May 2018 - Nov. 2018 Mentors: Oliver Wang, Bryan Russell, Eli Shechtman, Vladimir Kim, Matthew Fisher • Photometric optimization for 3D mesh reconstruction from RGB videos [6] Adobe Research Seattle, WA, USA **Research Intern** Apr. 2017 – Aug. 2017 Mentors: Eli Shechtman, Oliver Wang, Ersin Yumer • Learning realistic geometric corrections of objects for image compositing [7] National Taiwan University Taipei, Taiwan **Undergraduate Research Assistant** Sep. 2011 - Aug. 2013

- Advisor: Homer H. Chen
- Perceptual qualitative rate-distortion optimization for video compression

MediaTek Inc.

Software Engineering Intern (computer vision)

• Distributed algorithms for parallelized face detection on mobile devices

Hsinchu, Taiwan Jul. 2012 – Sep. 2012

Publications

Conference Papers

- [1] <u>Chen-Hsuan Lin</u>*, Jun Gao*, Luming Tang*, Towaki Takikawa*, Xiaohui Zeng*, Xun Huang, Karsten Kreis, Sanja Fidler[†], Ming-Yu Liu[†], and Tsung-Yi Lin <u>Magic3D: High-Resolution Text-to-3D Content Creation</u> In *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR), 2023 (highlight)
- [2] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H. Taylor, Mathias Unberath, Ming-Yu Liu, and <u>Chen-Hsuan Lin</u> Neuralangelo: High-Fidelity Neural Surface Reconstruction In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023
- [3] <u>Chen-Hsuan Lin</u>, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey BARF: Bundle-Adjusting Neural Radiance Fields In *IEEE International Conference on Computer Vision* (ICCV), 2021 (oral presentation)
- [4] <u>Chen-Hsuan Lin</u>, Chaoyang Wang, and Simon Lucey SDF-SRN: Learning Signed Distance 3D Object Reconstruction from Static Images In Conference on Neural Information Processing Systems (NeurIPS), 2020
- [5] Chaoyang Wang, <u>Chen-Hsuan Lin</u>, and Simon Lucey <u>Deep NRSfM++: Towards Unsupervised 2D-3D Lifting in the Wild</u> In *IEEE International Conference on 3D Vision* (3DV), 2020 (oral presentation)
- [6] <u>Chen-Hsuan Lin</u>, Oliver Wang, Bryan C. Russell, Eli Shechtman, Vladimir G. Kim, Matthew Fisher, and Simon Lucey Photometric Mesh Optimization for Video-Aligned 3D Object Reconstruction In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019
- [7] <u>Chen-Hsuan Lin</u>, Ersin Yumer, Oliver Wang, Eli Shechtman, and Simon Lucey ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018
- [8] Chaoyang Wang, Hamed Kiani Galoogahi, <u>Chen-Hsuan Lin</u>, and Simon Lucey Deep-LK for Efficient Adaptive Object Tracking In IEEE International Conference on Robotics and Automation (ICRA), 2018

- [9] <u>Chen-Hsuan Lin</u>, Chen Kong, and Simon Lucey Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction In AAAI Conference on Artificial Intelligence (AAAI), 2018 (oral presentation)
- [10] Rui Zhu, Chaoyang Wang, <u>Chen-Hsuan Lin</u>, Ziyan Wang, and Simon Lucey Object-Centric Photometric Bundle Adjustment with Deep Shape Prior In IEEE Winter Conference on Applications of Computer Vision (WACV), 2018
- [11] <u>Chen-Hsuan Lin</u> and Simon Lucey Inverse Compositional Spatial Transformer Networks In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (oral presentation)
- [12] Chen Kong, <u>Chen-Hsuan Lin</u>, and Simon Lucey Using Locally Corresponding CAD Models for Dense 3D Reconstructions from a Single Image In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
- [13] <u>Chen-Hsuan Lin</u>, Rui Zhu, and Simon Lucey <u>The Conditional Lucas & Kanade Algorithm</u> In European Conference on Computer Vision (ECCV), 2016

Patents

High-Resolution Neural 3D Surface Reconstruction from Video Capture U.S. Patent Application No. 17/990614	Nov. 2022
3D Object Reconstruction using Photometric Mesh Representation U.S. Patent No. 10769848	Sep. 2020
Image Composites using a Generative Adversarial Neural Network U.S. Patent No. 10719742	Jul. 2020

Honors & Awards

Fellowships & Scholarships	
NVIDIA Graduate Fellowship	Dec. 2018
Amazon Go Ph.D. Fellowship (declined)	Dec. 2018
Study Abroad Scholarship, Ministry of Education, Taiwan	Jun. 2018
Awards & Prizes	
• Top Poster Award finalist, NVIDIA GPU Technology Conference (GTC), 2020	Mar. 2020
Outstanding Achievement Award, 2012 Altera InnovateAsia FPGA Design Competition	Sep. 2012
Paper Reviewing Recognition	
• Highlighted Reviewer, International Conference on Learning Representations (ICLR), 2022	Apr. 2022
• Outstanding Reviewer, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021	May 2021

Selected Press Coverage

VentureBeat: NVIDIA researchers use AI to turn 2D video clips into detailed 3D graphics	Jun. 2023
The Verge: NVIDIA's new Neuralangelo AI model creates 3D models from 2D video clips.	Jun. 2023
Engadget: NVIDIA's Neuralangelo is an AI model that can generate 3D objects from 2D videos	Jun. 2023
Yahoo! News: NVIDIA's Neuralangelo is an AI model that can generate 3D objects from 2D videos	Jun. 2023
WIRED: NVIDIA Research's Neuralangelo can build 3D structures from 2D videos	Jun. 2023
BBC Science Focus: Breakthrough AI could soon generate whole 3D worlds from 2D videos	Jun. 2023
PetaPixel: NVIDIA's Neuralangelo AI Turns iPhone Video into Detailed 3D Structures	Jun. 2023

Computerworld: NVIDIA Neuralangelo: A faster path to the industrial metaverse	Jun. 2023
NVIDIA News: Digital Renaissance: NVIDIA Neuralangelo Research Reconstructs 3D Scenes	Jun. 2023
Forbes: What NVIDIA's New Text-To-3D Means For Engineering & Product Design	Nov. 2022
Ars Technica: 3D for everyone? NVIDIA's Magic3D can generate 3D models from text	Nov. 2022
Gigazine: NVIDIA announces AI "Magic3D" that generates high-resolution 3D models from text	Nov. 2022

Invited Talks

Magic3D: High-Resolution Text-to-3D Content Creation	
 Sea AI Labs & National University of Singapore 	Singapore • Dec. 2022
ByteDance Ltd.	Singapore • Dec. 2022
Learning 3D Registration and Reconstruction from the Visual World	
National Taiwan University	Taipei, Taiwan • Jan. 2022
Massachusetts Institute of Technology	Cambridge, MA, USA • Sep. 2021
Carnegie Mellon University	Pittsburgh, PA, USA • Apr. 2021
• MediaTek Inc.	Hsinchu, Taiwan • Apr. 2021
Facebook (Meta) Reality Labs	Redmond, WA, USA • Mar. 2021
Apple ML Research	Seattle, WA, USA • Mar. 2021
Amazon Science	Seattle, WA, USA • Mar. 2021
Magic Leap Inc.	Sunnyvale, CA, USA • Mar. 2021
NVIDIA Research	Santa Clara, CA, USA • Mar. 2021
CMU Argo AI Center for Autonomous Vehicle Research	Pittsburgh, PA, USA • Mar. 2021
Google Research	Seattle, WA, USA • Mar. 2021
PAPE: Pundle Adjusting Neural Padjance Fields	
BARF: Bundle-Adjusting Neural Radiance Fields	Mantraal Canada , Oat 2021
• IEEE International Conference on Computer Vision (ICCV), 2021	Montreal, Canada • Oct. 2021
SDF-SRN: Learning Signed Distance 3D Object Reconstruction from Static Imag	ges
Massachusetts Institute of Technology	Cambridge, MA, USA • Jan. 2021
Beijing Academy of Artificial Intelligence	Beijing, China • Nov. 2020
Learning Dense 2D Object Decouverties with east Ocean state from an ising	
Learning Dense 3D Object Reconstruction without Geometric Supervision	
NVIDIA GPU Technology Conference (GTC), 2020	San Jose, CA, USA • Mar. 2020
Carnegie Mellon University	Pittsburgh, PA, USA • Jan. 2020
Learning to Align without Geometric Supervision	
Carnegie Mellon University	Pittsburgh, PA, USA • Apr. 2019
Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction	
AAAI Conference on Artificial Intelligence (AAAI), 2018	New Orleans, LA, USA • Feb. 2018
Inverse Compositional Spatial Transformer Networks	
• IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017	Honolulu, HI, USA • Jul. 2017
Oculus Research (Meta Reality Labs)	Pittsburgh, PA, USA • Dec. 2016
The Conditional Lucas & Kanade Algorithm	
Carnegie Mellon University	Pittsburgh, PA, USA • Jun. 2016
MathWorks Inc.	Natick, MA, USA • Apr. 2016
Oculus VR (Meta Platforms Inc.)	Menlo Park, CA, USA • Feb. 2016

Academic Services

Journal Paper Reviewer

٠	IEEE Transactions on Visualization and Computer Graphics (TVCG)	2023
٠	IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)	2021, 2022

 Transactions on Machine Learning Research (TMLR) IEEE Transactions on Image Processing (TIP) International Journal of Computer Vision (IJCV) IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) Journal of Machine Vision and Applications (MVAP) IEEE Transactions on Affective Computing (TAFFC) 	2022 2020 2019, 2020 2019 2017 2015
Conference Paper Reviewer	• •
 ACM Conference on Computer Graphics and Interactive Techniques in Asia (SIGGRAPH Asia) Conference on Neural Information Processing Systems (NeurIPS) IEEE International Conference on Computer Vision (ICCV) IEEE Conference on Computer Vision and Pattern Recognition (CVPR) International Conference on Learning Representations (ICLR) International Conference on Robotics and Automation (ICRA) IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) European Conference on Computer Vision (ECCV) International Conference on Machine Learning (ICML) IEEE International Conference on 3D Vision (3DV) IEEE International Symposium on Circuits and Systems (ISCAS) 	ia) 2023 2020 - 2023 2019 - 2023 2018 - 2023 2022, 2023 2023 2023 2023 2018 - 2022 2022 2021 2014
CMU Institutional Services	
 Ph.D. in Robotics Research Qualifier Committee Examinee: Nathaniel Chodosh, Wei Dong, Ming-Fang Chang, Chaoyang Wang 	2019, 2020
M.S. in Robotics Thesis Committee	2018
Examinee: Chaoyang WangM.S. in Robotics Admission Committee	2019
Teaching Experiences Carnegie Mellon University	Pittsburgh, PA, USA
 Graduate Student Instructor / Teaching Assistant Course: Visual Learning and Recognition (CMU 16-824) Instructor: Abhinav Gupta Full lectures: 3D Vision & 3D Reasoning, Semantic Segmentation & Pixel Labeling 	Spring 2019
 Head Teaching Assistant Course: Computer Vision (CMU 16-720) Instructors: Srinivasa Narasimhan, Simon Lucey, Yaser Sheikh 	Fall 2017
• Teaching Assistant Course: Designing Computer Vision Apps (CMU 16-423) Instructor: Simon Lucey	Fall 2015

Selected Academic Projects

Carnegie Mellon University	Pittsburgh, PA, USA
• Towards a More Curious Agent Reinforcement learning with intrinsic rewards based on causality modeling	Spring 2018
• Disentangler Networks with Absolute and Relative Attributes Disentangled image representations learnable from relative attribute ranking	Spring 2016
• Video Summarization via Convolutional Neural Networks K-means clustering of image features using a summarization objective function	Spring 2015

• Real-time SLAM with Geometric Features Indoor SLAM system by plane/edge extraction and alignment from point clouds	Fall 2014
National Taiwan University	Taipei, Taiwan
 Medical 3D Reconstruction of Skin Tissue Sectioning 3D recalibration and realignment of deformed specimen slices for infection diagnosis 	Spring 2013
• Webcam Gaze Tracking System Gaze prediction on laptop screens by learning from semi-auto collected data	Spring 2013
• Virtual Paper Piano Keyboard System Touch instrumental system using finger/keyboard pattern recognition on FPGA	Spring & Fall 2012

Selected Academic Coursework

Carnegie Mellon University

Computer Vision (A), Machine Learning (A), Visual Learning and Recognition (A+), Convex Optimization (A), Intermediate Statistics (A), Mathematics Fundamentals for Robotics (A), Deep Reinforcement Learning and Control (A)

National Taiwan University

Multimedia Signal Processing (A+), Digital Image Processing (A+), Digital Video Technology (A), Machine Learning (A), Multimedia Analysis and Indexing (A+), Information Theory (A+), Data Structure and Programming (A+)

Proficient Skills

Programming languages

- Primary: Python, C/C++, LATEX, MATLAB
- Secondary: CUDA, Lua, HTML, Javascript

Software libraries

- Primary: PyTorch, TensorFlow, Blender, COLMAP
- Secondary: OpenAI Gym, Torch, Caffe, OpenCV, VLFeat, Pthread

Pittsburgh, PA, USA

Taipei, Taiwan