

ericlin79119/IC-STN



# Inverse Compositional Spatial Transformer Networks

Carnegie Mellon University



## Overview

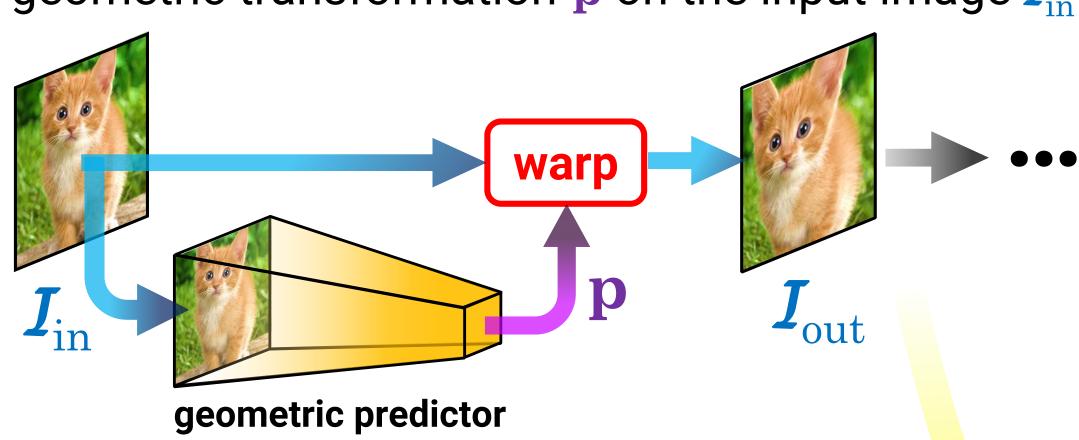
Typical CNNs tolerate spatial variations within data implicitly through

- 1. Data augmentation (generate geometric perturbations)
- 2. Spatial pooling (abstracts semantics, but destroys spatial details)

We propose IC-STN to resolve spatial variations explicitly via recurrent transformations

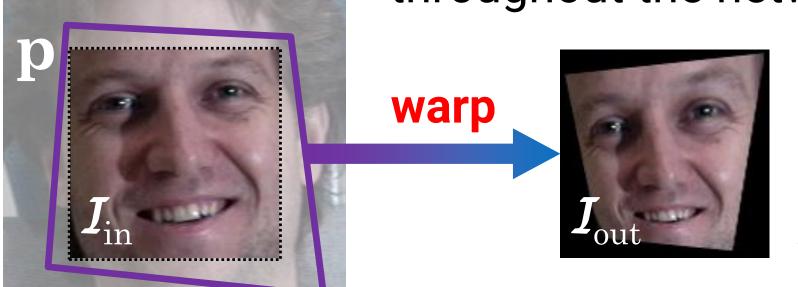
#### **Spatial Transformer Networks (STN)**

learns to **resolve** spatial variations explicitly by predicting the geometric transformation  $\mathbf{p}$  on the input image  $\mathbf{I}_{in}$ 



$$\mathcal{I}_{out}(\mathbf{0}) = \mathcal{I}_{in}(\mathbf{p})$$
 , where  $\mathbf{p} = f(\mathcal{I}_{in}(\mathbf{0}))$ 

• Boundary effect Geometry is not preserved throughout the network



Information from original image is lost!

Single prediction

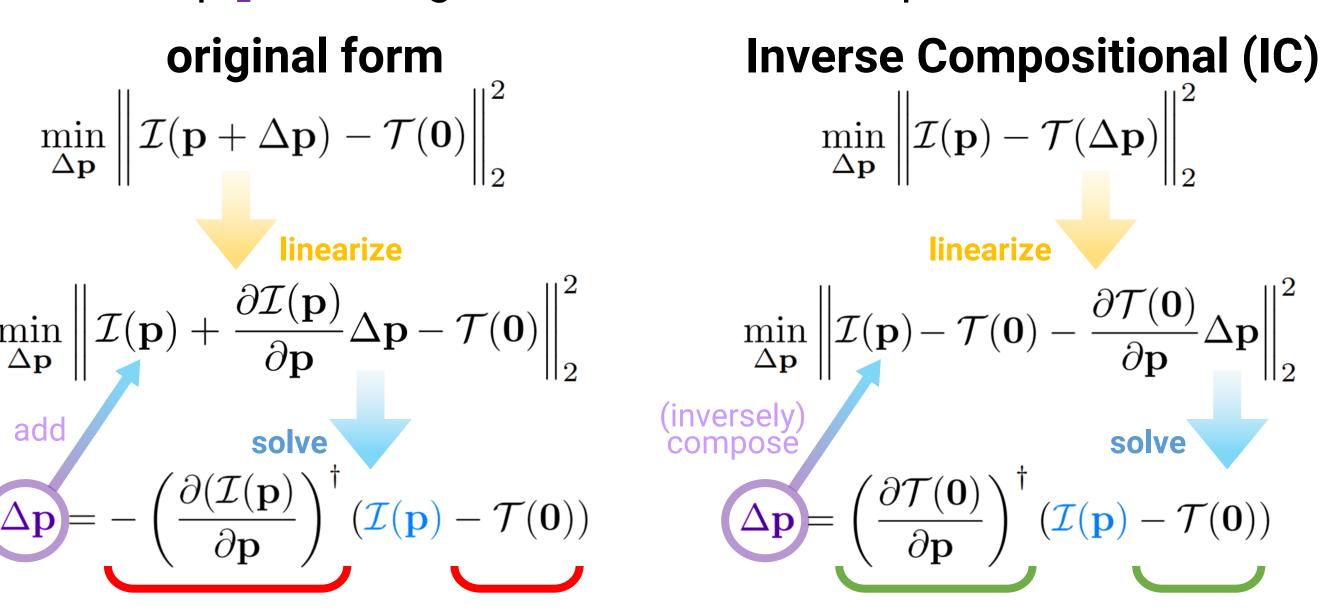
Appearance decorrelates with larger geometric displacements



### The Lucas-Kanade (LK) Algorithm

solves for alignment by **iteratively** predicting updates to the warp  $\mathbf{p}$  on image  $\mathbf{I}$  to match the template  $\mathbf{T}$ 

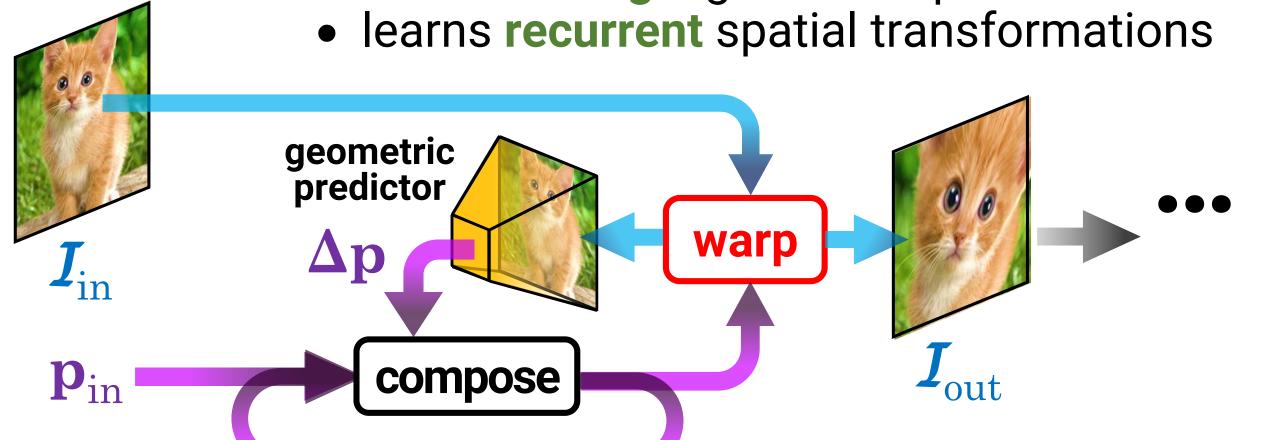
Chen-Hsuan Lin, Simon Lucey



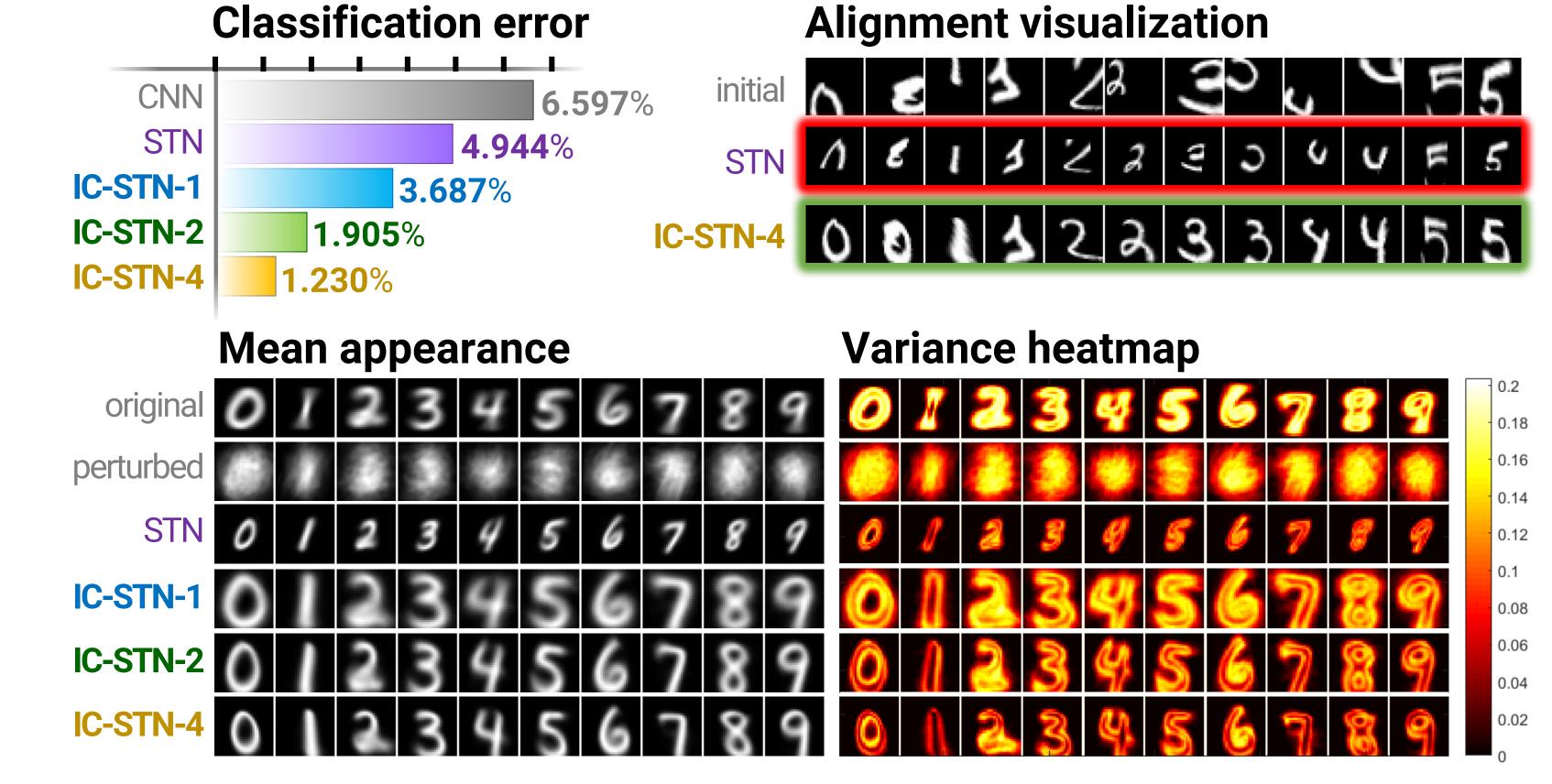
Iteration-specific linear models (dependent on warp state p)

Static linear model (independent on warp state p)

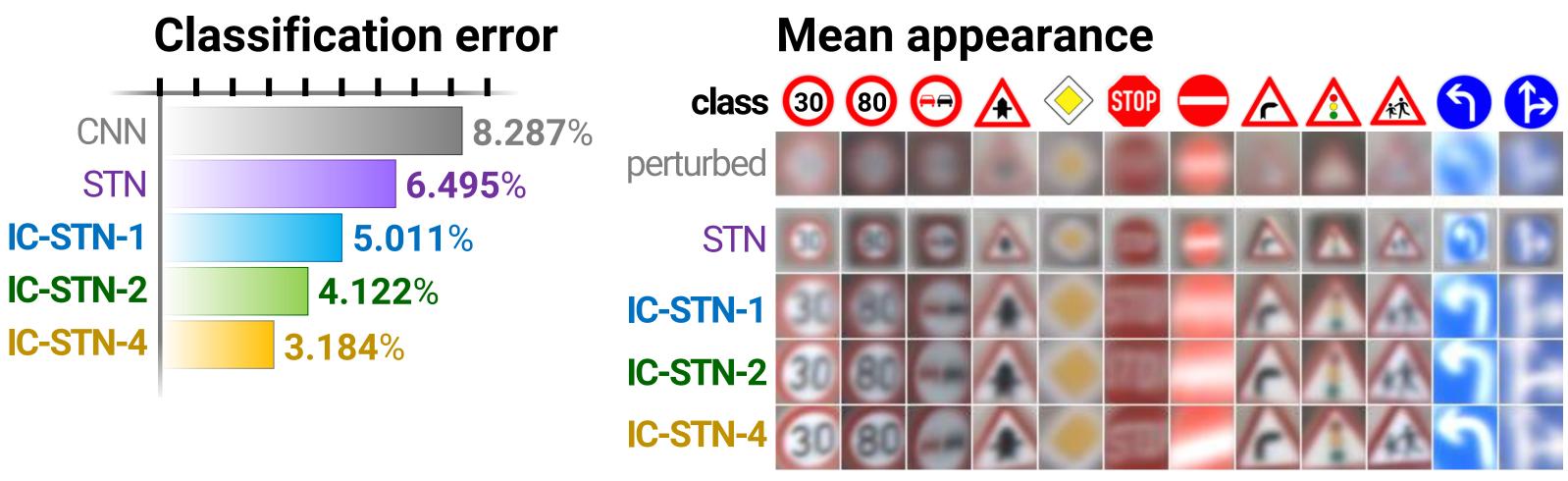
# preserves geometry and original input image utilizes a single geometric predictor learns recurrent spatial transformations



## Experiments (perturbed MNIST classification)



# Experiments (traffic sign classification)



### Discussions

- Theoretical connection: **STN CLK**
- Tolerating data spatial variations needs huge increase of model capacity
- Alignment is more efficient predicting small geometric updates iteratively
   Check out our paper and code for more details and discussions!