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Abstract

DreamFusion [31] has recently demonstrated the utility

of a pre-trained text-to-image diffusion model to optimize

Neural Radiance Fields (NeRF) [23], achieving remarkable

text-to-3D synthesis results. However, the method has two in-

herent limitations: (a) extremely slow optimization of NeRF

and (b) low-resolution image space supervision on NeRF,

leading to low-quality 3D models with a long processing

time. In this paper, we address these limitations by utilizing a

two-stage optimization framework. First, we obtain a coarse

model using a low-resolution diffusion prior and accelerate

with a sparse 3D hash grid structure. Using the coarse repre-

sentation as the initialization, we further optimize a textured

3D mesh model with an efficient differentiable renderer in-

teracting with a high-resolution latent diffusion model. Our

method, dubbed Magic3D, can create high quality 3D mesh

models in 40 minutes, which is 2× faster than DreamFu-

sion (reportedly taking 1.5 hours on average), while also

achieving higher resolution. User studies show 61.7% raters

to prefer our approach over DreamFusion. Together with

the image-conditioned generation capabilities, we provide

users with new ways to control 3D synthesis, opening up new

avenues to various creative applications.

1. Introduction

3D digital content has been in high demand for a variety

of applications, including gaming, entertainment, architec-

ture, and robotics simulation. It is slowly finding its way into

virtually every possible domain: retail, online conferencing,

virtual social presence, education, etc. However, creating

professional 3D content is not for anyone Ð it requires

immense artistic and aesthetic training with 3D modeling ex-

pertise. Developing these skill sets takes a significant amount

of time and effort. Augmenting 3D content creation with

natural language could considerably help democratize 3D

content creation for novices and turbocharge expert artists.

*†: equal contribution.

Image content creation from text prompts [2, 28, 33, 36]

has seen significant progress with the advances of diffusion

models [13, 41, 42] for generative modeling of images. The

key enablers are large-scale datasets comprising billions

of samples (images with text) scrapped from the Internet

and massive amounts of compute. In contrast, 3D content

generation has progressed at a much slower pace. Existing

3D object generation models [4,9,47] are mostly categorical.

A trained model can only be used to synthesize objects for a

single class, with early signs of scaling to multiple classes

shown recently by Zeng et al. [47]. Therefore, what a user

can do with these models is extremely limited and not yet

ready for artistic creation. This limitation is largely due to the

lack of diverse large-scale 3D datasets Ð compared to image

and video content, 3D content is much less accessible on the

Internet. This naturally raises the question of whether 3D

generation capability can be achieved by leveraging powerful

text-to-image generative models.

Recently, DreamFusion [31] demonstrated its remarkable

ability for text-conditioned 3D content generation by uti-

lizing a pre-trained text-to-image diffusion model [36] that

generates images as a strong image prior. The diffusion

model acts as a critic to optimize the underlying 3D repre-

sentation. The optimization process ensures that rendered

images from a 3D model, represented by Neural Radiance

Fields (NeRF) [23], match the distribution of photorealis-

tic images across different viewpoints, given the input text

prompt. Since the supervision signal in DreamFusion oper-

ates on very low-resolution images (64× 64), DreamFusion

cannot synthesize high-frequency 3D geometric and texture

details. Due to the use of inefficient MLP architectures for

the NeRF representation, practical high-resolution synthesis

may not even be possible as the required memory footprint

and the computation budget grows quickly with the resolu-

tion. Even at a resolution of 64× 64, optimization times are

in hours (1.5 hours per prompt on average using TPUv4).

In this paper, we present a method that can synthesize

highly detailed 3D models from text prompts within a re-

duced computation time. Specifically, we propose a coarse-
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Figure 1. Results and applications of Magic3D. Top: high-resolution text-to-3D generation. Magic3D can generate high-quality

and high-resolution 3D models from text prompts. Bottom: high-resolution prompt-based editing. Magic3D can edit 3D models by

fine-tuning with the diffusion prior using a different prompt. Taking the low-resolution 3D model as the input (left), Magic3D can modify

different parts of the 3D model corresponding to different input text prompts. Together with various creative controls on the generated 3D

models, Magic3D is a convenient tool for augmenting 3D content creation.

to-fine optimization approach that uses multiple diffusion

priors at different resolutions to optimize the 3D representa-

tion, enabling the generation of both view-consistent geome-

try as well as high-resolution details. In the first stage, we

optimize a coarse neural field representation akin to Dream-

Fusion, but with a memory- and compute-efficient scene

representation based on a hash grid [25]. In the second stage,

we switch to optimizing mesh representations, a critical step

that allows us to utilize diffusion priors at resolutions as high

as 512× 512. As 3D meshes are amenable to fast graphics

renderers that can render high-resolution images in real-time,

we leverage an efficient differentiable rasterizer [9, 26] and

make use of camera close-ups to recover high-frequency

details in geometry and texture. As a result, our approach



produces high-fidelity 3D content (see Fig. 1) that can con-

veniently be imported and visualized in standard graphics

software and does so at 2× the speed of DreamFusion. Fur-

thermore, we showcase various creative controls over the 3D

synthesis process by leveraging the advancements developed

for text-to-image editing applications [2, 35]. Our approach,

dubbed Magic3D, endows users with unprecedented control

in crafting their desired 3D objects with text prompts and

reference images, bringing this technology one step closer

to democratizing 3D content creation.

In summary, our work makes the following contributions:

• We propose Magic3D, a framework for high-quality 3D

content synthesis using text prompts by improving several

major design choices made in DreamFusion. It consists of

a coarse-to-fine strategy that leverages both low- and high-

resolution diffusion priors for learning the 3D representa-

tion of the target content. Magic3D, which synthesizes 3D

content with an 8× higher resolution supervision, is also

2× faster than DreamFusion. 3D content synthesized by

our approach is significantly preferable by users (61.7%).

• We extend various image editing techniques developed for

text-to-image models to 3D object editing and show their

applications in the proposed framework.

2. Related Work

Text-to-image generation. We have witnessed significant

progress in text-to-image generation with diffusion models

in recent years. With improvements in modeling and data

curation, diffusion models can compose complex semantic

concepts from text descriptions (nouns, adjectives, artistic

styles, etc.) to generate high-quality images of objects and

scenes [2, 33, 34, 36]. Sampling images from diffusion mod-

els is time consuming. To generate high-resolution images,

these models either utilize a cascade of super-resolution mod-

els [2, 36] or sample from a lower-resolution latent space

and decode latents into high-resolution images [34]. Despite

the advances in high-resolution image generation, using lan-

guage to describe and control 3D properties (e.g. camera

viewpoints) while maintaining coherency in 3D remains an

open, challenging problem.

3D generative models. There is a large body of work on 3D

generative modeling, exploring different types of 3D repre-

sentations such as 3D voxel grids [7, 12, 20, 40, 45], point-

clouds [1, 21, 24, 46, 47, 49], meshes [9, 48], implicit [6, 22],

or octree [15] representations. Most of these approaches rely

on training data in the form of 3D assets, which are hard to

acquire at scale. Inspired by the success of neural volume

rendering [23], recent works started investing in 3D-aware

image synthesis [4, 5, 10, 11, 27, 29, 30, 38], which has the

advantage of learning 3D generative models directly from

images Ð a more widely accessible resource. However, vol-

ume rendering networks are typically slow to query, leading

to a trade-off between long training time [5, 29] and lack

of multi-view consistency [10]. EG3D [4] partially miti-

gates this problem by utilizing a dual discriminator. While

obtaining promising results, these works remain limited to

modeling objects within a single object category, such as

cars, chairs, or human faces, thus lacking scalability and the

creative control desired for 3D content creation. In our paper,

we focus on text-to-3D synthesis, aiming to generate a 3D

renderable representation of a scene based on a text prompt.

Text-to-3D generation. With the recent success in text-to-

image generative modeling in recent years, text-to-3D gen-

eration has also gained a surge of interest from the learning

community. Earlier works such as CLIP-forge [37] synthe-

sizes objects by learning a normalizing flow model to sample

shape embeddings from textual input. However, it requires

3D assets in voxel representations during training, making it

challenging to scale with data. DreamField [16] and CLIP-

mesh [17] mitigate the training data issue by relying on a

pre-trained image-text model [32] to optimize the underlying

3D representations (NeRFs and meshes), such that all 2D ren-

derings reach high text-image alignment scores. While these

approaches avoid the requirement of expensive 3D training

data and mostly rely on pre-trained large-scale image-text

models, they tend to produce less realistic 2D renderings.

Recently, DreamFusion [31] showcased impressive ca-

pability in text-to-3D synthesis by utilizing a powerful pre-

trained text-to-image diffusion model [36] as a strong image

prior. We build upon this work and improve over several de-

sign choices to bring significantly higher-fidelity 3D models

into hands of users with a much reduced generation time.

3. Background: DreamFusion

DreamFusion [31] achieves text-to-3D generation with

two key components: a neural scene representation which we

refer to as the scene model, and a pre-trained text-to-image

diffusion-based generative model. The scene model is a para-

metric function x = g(θ), which can produce an image x at

the desired camera pose. Here, g is a volumetric renderer

of choice, and θ is a coordinate-based MLP representing a

3D volume. The diffusion model ϕ comes with a learned de-

noising function ϵϕ(xt; y, t) that predicts the sampled noise

ϵ given the noisy image xt, noise level t, and text embed-

ding y. It provides the gradient direction to update θ such

that all rendered images are pushed to the high probability

density regions conditioned on the text embedding under the

diffusion prior. Specifically, DreamFusion introduces Score

Distillation Sampling (SDS), which computes the gradient:

∇θLSDS(ϕ, g(θ)) = Et,ϵ

[

w(t)(ϵϕ(xt; y, t)− ϵ)
∂x

∂θ

]

. (1)

Here, w(t) is a weighting function. We view the scene model

g and the diffusion model ϕ as modular components of the
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Figure 2. Overview of Magic3D. We generate high-resolution 3D content from an input text prompt in a coarse-to-fine manner. In the first

stage, we utilize a low-resolution diffusion prior and optimize neural field representations (color, density, and normal fields) to obtain the

coarse model. We further differentiably extract textured 3D mesh from the density and color fields of the coarse model. Then we fine-tune it

using a high-resolution latent diffusion model. After optimization, our model generates high-quality 3D meshes with detailed textures.

framework, amenable to choice. In practice, the denoising

function ϵϕ is often replaced with another function ϵ̃ϕ that

uses classifier-free guidance [14], which allows one to care-

fully weigh the strength of the text conditioning (see Sec. 6).

DreamFusion relies on large classifier-free guidance weights

to obtain results with better quality.

DreamFusion adopts a variant of Mip-NeRF 360 [3] with

an explicit shading model for the scene model and Ima-

gen [36] as the diffusion model. These choices result in two

key limitations. First, high-resolution geometry or textures

cannot be obtained since the diffusion model only operates

on 64×64 images. Second, the utility of a large global MLP

for volume rendering is both computationally expensive as

well as memory intensive, making this approach scale poorly

with the increasing resolution of images.

4. High-Resolution 3D Generation

Magic3D is a two-stage coarse-to-fine framework that

uses efficient scene models that enable high-resolution text-

to-3D synthesis (Fig. 2). We describe our method and key

differences from DreamFusion [31] in this section.

4.1. Coarse-to-fine Diffusion Priors

Magic3D uses two different diffusion priors in a coarse-

to-fine fashion to generate high-resolution geometry and

textures. In the first stage, we use the base diffusion model

described in eDiff-I [2], which is similar to the base dif-

fusion model of Imagen [36] used in DreamFusion. This

diffusion prior is used to compute gradients of the scene

model via a loss defined on rendered images at a low resolu-

tion 64× 64. In the second stage, we use the latent diffusion

model (LDM) [34] that allows backpropagating gradients

into rendered images at a high resolution 512× 512; in prac-

tice, we choose to use the publicly available Stable Diffusion

model [34]. Despite generating high-resolution images, the

computation of LDM is manageable because the diffusion

prior acts on the latent zt with resolution 64× 64:

∇θLSDS(ϕ, g(θ)) = Et,ϵ

[

w(t)(ϵϕ(zt; y, t)−ϵ)
∂z

∂x

∂x

∂θ

]

. (2)

The increase in computation time mainly comes from com-

puting ∂x/ ∂θ (the gradient of the high-resolution rendered

image) and ∂z/ ∂x (the gradient of the encoder in LDM).

4.2. Scene Models

We cater two different 3D scene representations to the

two different diffusion priors at coarse and fine resolutions

to accommodate the increased resolution of rendered images

for the input of high-resolution priors, discussed as follows.

Neural fields as coarse scene models. The initial coarse

stage of the optimization requires finding the geometry and

textures from scratch. This can be challenging as we need to

accommodate complex topological changes in the 3D geom-

etry and depth ambiguities from the 2D supervision signals.

In DreamFusion [31], the scene model is a neural field (a

coordinate-based MLP) based on Mip-NeRF 360 [3] that pre-

dicts albedo and density. This is a suitable choice as neural

fields can handle topological changes in a smooth, continu-

ous fashion. However, Mip-NeRF 360 [3] is computationally

expensive as it is based on a large global coordinate-based

MLP. As volume rendering requires dense samples along a

ray to accurately render high-frequency geometry and shad-

ing, the cost of having to evaluate a large neural network at

every sample point quickly stacks up.

For this reason, we opt to use the hash grid encoding

from Instant NGP [25], which allows us to represent high-

frequency details at a much lower computational cost. We

use the hash grid with two single-layer neural networks,



one predicting albedo and density and the other predicting

normals. We additionally maintain a spatial data structure

that encodes scene occupancy and utilizes empty space skip-

ping [19, 43]. Specifically, we use the density-based voxel

pruning approach from Instant NGP [25] with an octree-

based ray sampling and rendering algorithm [44]. With these

design choices, we drastically accelerate the optimization of

coarse scene models while maintaining quality.

Textured meshes as fine scene models. In our fine stage of

optimization, we need to be able to accommodate very high-

resolution rendered images to fine-tune our scene model

with high-resolution diffusion priors. Using the same scene

representation (the neural field) from the initial coarse stage

of optimization could be a natural choice since the weights

of the model can directly carry over. Although this strategy

can work to some extent (Figs. 4 and 5), it struggles to

render very high-resolution (e.g., 512× 512) images within

reasonable memory constraints and computation budgets.

To resolve this issue, we use textured 3D meshes as the

scene representation for the fine stage of optimization. In

contrast to volume rendering for neural fields, rendering

textured meshes with differentiable rasterization can be per-

formed efficiently at very high resolutions, making meshes

a suitable choice for our high-resolution optimization stage.

Using the neural field from the coarse stage as the initial-

ization for the mesh geometry, we can also sidestep the

difficulty of learning large topological changes in meshes.

Formally, we represent the 3D shape using a deformable

tetrahedral grid (VT , T ), where VT is the vertices in the grid

T [8, 39]. Each vertex vi ∈ VT ⊂ R
3 contains a signed

distance field (SDF) value si ∈ R and a deformation ∆vi ∈

R
3 of the vertex from its initial canonical coordinate. Then,

we extract a surface mesh from the SDF using a differentiable

marching tetrahedra algorithm [39]. For textures, we use the

neural color field as a volumetric texture representation.

4.3. Coarse-to-fine Optimization

We describe our coarse-to-fine optimization procedure,

which first operates on a coarse neural field representation

and subsequently a high-resolution textured mesh.

Neural field optimization. Similarly to Instant NGP [25],

we initialize an occupancy grid of resolution 2563 with val-

ues to 20 to encourage shapes to grow in the early stages

of optimization. We update the grid every 10 iterations and

generate an octree for empty space skipping. We decay the

occupancy grid by 0.6 in every update and follow Instant

NGP with the same update and thresholding parameters.

Instead of estimating normals from density differences,

we use an MLP to predict the normals. Note that this does

not violate geometric properties since volume rendering is

used instead of surface rendering; as such, the orientation

of particles at continuous positions need not be oriented

to the level set surface. This helps us significantly reduce

the computational cost of optimizing the coarse model by

avoiding the use of finite differencing. Accurate normals can

be obtained in the fine stage of optimization when we use a

true surface rendering model.

Similar to DreamFusion, we also model the background

using an environment map MLP, which predicts RGB colors

as a function of ray directions. Since our sparse represen-

tation model does not support scene reparametrization as

in Mip-NeRF 360 [3], the optimization has a tendency to

ªcheatº by learning the essence of the object using the back-

ground environment map. As such, we use a tiny MLP for

the environment map (hidden dimension size of 16) and

weigh down the learning rate by 10× to allow the model to

focus more on the neural field geometry.

Mesh optimization. To optimize a mesh from the neural

field initialization, we convert the (coarse) density field to an

SDF by subtracting it with a non-zero constant, yielding the

initial si. We additionally initialize the volume texture field

directly with the color field optimized from the coarse stage.

During optimization, we render the extracted surface

mesh into high-resolution images using a differentiable ras-

terizer [18,26]. We optimize both si and ∆vi for each vertex

vi via backpropagation using the high-resolution SDS gra-

dient (Eq. 2). When rendering the mesh to an image, we

also track the 3D coordinates of each corresponding pixel

projection, which would be used to query colors in the corre-

sponding texture field for joint optimization.

When rendering the mesh, we increase the focal length

to zoom in on object details, which is a critical step to-

wards recovering high-frequency details. We keep the same

pre-trained environment map from the coarse stage of opti-

mization and composite the rendered background with the

rendered foreground object using differentiable antialias-

ing [18]. To encourage the smoothness of the surface, we

further regularize the angular differences between adjacent

faces on the mesh. This allows us to obtain well-behaved

geometry even under supervision signals with high variance,

such as the SDS gradient ∇θLSDS.

5. Experiments

We focus on comparing our method with DreamFu-

sion [31] on 397 text prompts taken from the website of

DreamFusion1. We train Magic3D on all of the text prompts

and compare them with the results provided on the website.

Speed evaluation. Unless otherwise noted, the coarse stage

is trained for 5000 iterations with 1024 samples along the ray

(subsequently filtered by the sparse octree) with a batch size

of 32, with a total runtime of around 15 minutes (upwards of

8 iterations / second, variable due to differences in sparsity).

The fine stage is trained for 3000 iterations with a batch

1https://dreamfusion3d.github.io/gallery.html
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Figure 3. Qualitative comparison with DreamFusion [31]. We use the same text prompt as in DreamFusion. For each 3D model, we

render it from two views with a textureless rendering for each view and remove the background to focus on the actual 3D shape. For the

DreamFusion results, we take frames from the videos published on the official webpage. Our Magic3D generates much higher quality 3D

shapes on both geometry and texture compared with DreamFusion. ∗ a DSLR photo of... † a zoomed out DSLR photo of...

Table 1. User preference studies. We conducted user studies to

measure preference for 3D models generated using 397 prompts

released by DreamFusion. Overlal, more raters (61.7%) prefer 3D

models generated by Magic3D over DreamFusion. The majority of

raters (87.7%) prefer fine models over coarse models in Magic3D,

showing the effectiveness of our coarse-to-fine approach.

Comparison Preference

Magic3D vs. DreamFusion [31]

• More realistic 58.3%

• More detailed 66.0%

• More realistic & detailed 61.7%

Magic3D vs. Magic3D (coarse only) 87.7%

size of 32 with a total runtime of 25 minutes (2 iterations

/ second). Both runtimes combined are 40 minutes. All

runtimes were measured on 8 NVIDIA A100 GPUs.

Qualitative comparisons. We provide qualitative examples

in Fig. 3. Qualitatively, our models achieve much higher

3D quality in terms of both geometry and texture. Notice

that our model can generate candies on ice cream cones,

highly detailed sushi-like cars, vivid strawberries, and birds.

We also note that our resulting 3D models can be directly

imported and visualized in standard graphics software.

(a) Single-stage model 

(b) Coarse-to-fine model

a baby bunny sitting on top of a stack of pancakes†

Figure 4. Single-stage (top) vs. coarse-to-fine models (bottom).

Both use NeRF for the scene model. The left two columns use

64×64 rendering resolution during optimization while the right

two use 256×256. Compared to our coarse-to-fine approach, the

single-stage method can generate details but with worse shapes.

User studies. We conduct user studies to evaluate different

methods based on user preferences on Amazon MTurk. We

show users two videos side by side rendered from a canonical

view by two different algorithms using the same text prompt.

We ask the users to select the one that is more realistic
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Figure 5. Ablation on the fine-tuning stage. For each text prompt, we compare coarse and fine models with mesh and NeRF representations.

Mesh fine-tuning significantly improve the visual quality of generated 3D assets, providing more photo-realistic details on the 3D shapes.

and detailed. Each prompt is evaluated by 3 different users,

resulting in 1191 pairwise comparisons. As shown in Table 1,

users favor 3D models generated by Magic3D, with 61.7%

of the users considering our results with higher quality.

Can single-stage optimization work with LDM prior? We

ablate scene models optimized with high-resolution LDM

prior in a single-stage optimization setup. We find that 3D

meshes as the scene model fail to generate high-quality re-

sults if optimized from scratch. This leaves our our memory-

efficient sparse 3D representation as the ideal candidate

for the scene model. However, rendering 512 × 512 im-

ages is still too memory intensive to fit into modern GPUs.

Therefore, we render lower-resolution images from the scene

model and upsample them to 512×512 as input to the LDM.

We find it generates objects with worse shapes. Fig. 4 shows

two examples with scene rendering resolution 64× 64 and

256× 256 respectively (top row). While it generates furry

details, the shape is worse than the coarse model.

Can we use NeRF for the fine model? Yes. While optimiz-

ing a NeRF from scratch does not work well, we can follow

the coarse-to-fine framework but replace the second-stage

scene model with a NeRF. In the bottom right of Fig. 4,

we show the result of a fine NeRF model initialized with

the coarse model on its left and fine-tuned with 256× 256
rendered images. The two-stage approach retains good ge-

ometry in the initial model and adds more details, showing

superior quality to its one-stage counterpart.

Coarse models vs. fine models. Fig. 5 provides more visual

results contrasting coarse and fine models. We try both

NeRF and mesh for scene models and fine-tune them from

the same coarse model above. We see significant quality

improvements on both NeRF and mesh models, suggesting

our coarse-to-fine approach works for general scene models.

Input images a [V] cat riding a bike*

Input images a [V] dog running down the track*

Figure 6. Magic3D with DreamBooth-based personalization.

Given an input image of a particular instance, we fine-tune the dif-

fusion models with DreamBooth and optimize the 3D models with

the given prompts. The identity is well preserved in the generated

3D models. Image source (input images): Unsplash.

6. Controllable 3D Generation

As certain styles and concepts are difficult to express in

words but easy with images, it is desirable to have a mech-

anism to influence the text-to-3D model generation with

images. We explore different image conditioning techniques

as well as a prompt-based editing approach to provide users

more control over the 3D generation outputs.

Personalized text-to-3D. DreamBooth [35] described a

method to personalize text-to-image diffusion models by

fine-tuning a pre-trained model on several images of a sub-

ject. The fine-tuned model can learn to tie the subject to a

unique identifier string, denoted as [V], and generate images

of the subject when [V] is included in the text prompt. In
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Figure 7. Magic3D with prompt-based editing. Given a coarse model (first column) generated with a base prompt, we replace the

underscored text with new text and fine-tune the NeRF to get a high-resolution NeRF model with LDM. We further fine-tune the high-

resolution mesh with the NeRF model. Such a prompt-based editing method gives artists better control over the 3D generation output.

the context of text-to-3D generation, we would like to gen-

erate a 3D model of a subject. This can be achieved by first

fine-tuning our diffusion prior models with the DreamBooth

approach, and then using the fine-tuned diffusion priors with

the [V] identifier as part of the conditioning text prompt to

provide the learning signal when optimizing the 3D model.

To demonstrate the applicability of DreamBooth in our

framework, we collect 11 images of one cat and 4 images of

one dog. We fine-tune eDiff-I [2] and LDM [34], binding the

text identifier [V] to the given subject. Then, we optimize

the 3D model with [V] in the text prompts. We use a batch

size of 1 for all fine-tuning. For eDiff-I, we use the Adam

optimizer with learning rate 1× 10−5 for 1,500 iterations;

for LDM, we fine-tune with learning rate 1× 10−6 for 800

iterations. Fig. 6 shows our personalized text-to-3D results:

we are able to successfully modify the 3D models preserving

the subjects in the given input images.

Prompt-based editing through fine-tuning. Another way

to control the generated 3D content is by fine-tuning a

learned coarse model with a new prompt. Our prompt-based

editing includes three stages. (a) We train a coarse model

with a base prompt. (b) We modify the base prompt and fine-

tune the coarse model with the LDM. This stage provides

a well initialized NeRF model for the next step. Directly

applying mesh optimization on a new prompt would gener-

ate highly detailed textures but could deform geometry only

slightly. (c) We optimize the mesh with the modified text

prompt. Our prompt-based editing can modify the texture of

the shape or transform the geometry and texture according to

the text. The resulting scene models preserve the layer-out

and overall structure. Such an editing capability makes the

3D content creation with Magic3D more controllable. In

Fig. 7, we show two coarse NeRF models trained with the

base prompt for the ªbunnyº and ªsquirrelº. We modify

the base prompt, fine-tune the NeRF model in high reso-

lution and optimize the mesh. Results show that we can

tune the scene model according to the prompt, e.g. changing

the ªbaby bunnyº to ªstained glass bunnyº or ªmetal bunnyº

results in similar geometry but with a different texture.

7. Conclusion

We propose Magic3D, a fast and high-quality text-to-

3D generation framework. We benefit from both efficient

scene models and high-resolution diffusion priors in a coarse-

to-fine approach. In particular, the 3D mesh models scale

nicely with image resolution and enjoy the benefits of higher

resolution supervision brought by the latent diffusion model

without sacrificing its speed. It takes 40 minutes from a

text prompt to a high-quality 3D mesh model ready to be

used in graphic engines. With extensive user studies and

qualitative comparisons, we show that Magic3D is more

preferable (61.7%) by the raters compared to DreamFusion,

while enjoying a 2× speed-up. Lastly, we propose a set of

tools for better controlling style and content in 3D generation.

We hope with Magic3D, we can democratize 3D synthesis

and open up everyone’s creativity in 3D content creation.
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