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e The cameras () can be
Multi-view geometric methods (SfM, MVS) computed from SfM.

:\/Applicable to generic video sequences . |
'S¢ : The photometric loss at P; in

ﬁ Lacks semantics (which points are from the object?) Photometric loss over mesh projections:  triangle j is backpropagated

E : H T T H to the latent code Z.
Data-driven priors (deep networks) 1(X ) 2 (Xz) 1
~—2 Allows for dense 3D shape generation (semantics) B Z Z mesh vertices camera mesh vertices camera
rxj Cannot generalize 10 unseen sequences I Il (Vj) y Ql)) IQ ( (pz (V ) . QQ)) Hl . . .
| | | | eP; Check out our paper and code for more details and discussions!
[1] Groueix et al. “AtlasNet: A Papier-Méaché Approach to Learning 3D Surface Generation.” CVPR 2018 : Pi



