
Doctoral Thesis

Learning 3D Registration and Reconstruction
from the Visual World

Chen-Hsuan Lin

The Robotics Institute
School of Computer Science
Carnegie Mellon University

June 28, 2021

Doctoral Thesis Committee:
Simon Lucey

Deva Ramanan
Abhinav Gupta
Andrea Vedaldi

Carnegie Mellon University (chair)
Carnegie Mellon University
Carnegie Mellon University
University of Oxford

Technical Report Number: CMU-RI-TR-21-13

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright © 2021 Chen-Hsuan Lin



Keywords: registration, image alignment, dense 3D reconstruction, self-supervised learning,
structure from motion, multi-view geometry, photometric optimization, neural rendering, neural
scene representations



For my friends and family.



iv



Abstract

Humans learn to develop strong senses for 3D geometry by looking around in the
visual world. Through pure visual perception, not only can we recover a mental 3D
representation of what we are looking at, but meanwhile we can also recognize where
we are looking at the scene from. Finding the 3D scene representation from RGB
images (i.e. 3D reconstruction) and localizing the camera frames (i.e. registration)
are two long-standing problems in computer vision. Simultaneously solving both
tasks makes it an even more challenging chicken-and-egg problem — recovering the
3D structure requires observations with accurate camera poses, while localizing the
cameras requires reliable correspondences from the reconstruction.

In this thesis, we explore the problem of learning geometric alignment and dense
3D reconstruction from images and videos using self-supervised learning techniques.
Toward this end, we discuss the general importance of factorizing geometric in-
formation from visual data. First, we build up the theoretical foundations from
learning-based planar registration for images. We show that incorporating geometric
priors in learning models increases learning efficacy for alignment algorithms, and we
demonstrate both discriminate and generative applications of image registration with
modern deep neural networks. Second, we explore more complex 3D shape priors
parametrized by neural networks, which we train from images without 3D supervision
by utilizing differentiable rendering techniques. We develop methods for learning
from multi-view depth observations and even single-view supervision from static
RGB images. Finally, we investigate the challenging problem of joint optimization of
3D registration and reconstruction. Given a video sequence, we demonstrate how one
can exploit pretrained 3D shape priors to register and refine the shape reconstruction
to the video sequences, as well as a more generic rendering prior for learning neural
3D scene representations from unknown camera poses.

Images and videos contain very rich and detailed information about the 3D world.
Baking in suitable geometric priors allows learning models to effectively recover
both the dense 3D scene structures and the corresponding camera poses using image
synthesis as the proxy objective. We believe this is an essential ingredient towards
scalable learning of in-the-wild spatial 3D understanding for future AI systems.
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Chapter 1

Introduction

Humans have amazing capabilities of reasoning about the 3D world through pure visual perception.
When we move and look around, we are able to immediately infer the 3D structures of the visual
world by sensing how our observations change over time, even within the slightest instant. In
addition, our cognition can go further beyond ego-motion: we can perceive the 3D structures of
objects and scenes even when looking and static images and photographs. What also naturally
follows is our “sense of direction”: we can also immediately infer where we are looking at the
objects or scenes from. Such capabilities in turn allow us to understand and answer more complex
questions about our visual perception, such as “this office chair has five legs” or “the car on the
right is parked sideways on the road”.

The incredible thing is that we as humans develop such ability of 3D geometric reasoning and
sense of direction mostly just by looking and learning from the visual world, from as early as
when we were infants. For example, we can instantly identify the underlying shapes and structures
of famous landmarks around the world just by looking at photographs, even though we might have
never physically been to these places (not to say having actually touched or “felt” such geometric
structures). Furthermore, we could even also determine the location the photograph was taken at.
Through pure visual perception, not only can we recover a mental 3D representation of what we
are looking at, but meanwhile we can also recognize where we are looking at the scene from.

We thus ask the question: can we also allow machines to do the same? Is it possible to enable
AI systems to perceive dense 3D geometric structures by emulating our human learning process —
with “visual self-supervision”, i.e. learning from abundant visual data like images and videos?

The ability for machines to perceive and understand the world in 3D has a tremendous range
of practical applications (Fig. 1.1). Autonomous driving systems need to build accurate 3D maps
of the surrounding environment and geo-localize itself with respect to the maps, and they need
to be able to reason about nearby vehicles and pedestrians for safety control. Similarly, it is
necessary for robotic agents to perceive the world in 3D in order to navigate and interact with
the environment without colliding with its surroundings. For augmented/virtual/mixed reality
applications, it is also essential to successfully track the ego-motion of mobile displays relative to
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autonomous driving robot navigation computer graphics

virtual reality medical imagingaugmented reality

Figure 1.1: The problems of 3D reconstruction — recovering the 3D geometric representation
from the images, and registration — localizing the corresponding camera frames, are fundamental
problems in computer vision which concerns a wide variety of tasks, including autonomous driving,
robot navigation, computer graphics, augmented/virtual reality, and medical imaging.

the 3D world in order to recreate a partial or full virtual world. Computer graphics applications are
also highly related as realistic 3D content could be much more easily created through simplified
processes without requiring laborious manual efforts. This even has future potentials for medical
applications such as medical 3D imaging to facilitate more accurate diagnoses for doctors and
surgeons. While far from an exhaustive list, these are some of the key applications that highlight
the importance of such ability of 3D perception to AI systems in general.

Solving for the dense 3D geometric structures from RGB images (i.e. 3D reconstruction)
and localizing the camera (i.e. registration) have been two long-standing problems in computer
vision. Simultaneously solving both tasks makes it an even more challenging chicken-and-egg
problem — recovering the 3D structure requires observations with accurate camera poses, while
localizing the cameras requires reliable correspondences from the reconstruction. This dissertation
is centered around utilizing learning-based methods, more specifically using deep neural networks,
to solve for both problems together by incorporating prior knowledge of the 3D geometry. In
contrast to classical 3D reconstruction methods that could only recover the 3D world as sparse 3D
point clouds, data-driven priors further allows us to recover dense 3D structures (i.e. surfaces)
in different forms of 3D representations, so as to enable dense, pixel-level understanding of the
underlying 3D geometry within images and videos.
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1.1 Registration

A famous quote by celebrated computer vision scientist Prof. Takeo Kanade goes that the three
most important problems in computer vision are “registration, registration, and registration”. It is
indeed true that registration has been the core fundamental for all computer vision algorithms to
work more effectively and efficiently. This still stands true even in the modern era of deep learning,
where computer vision problems are largely tackled by deep neural networks. For example, to
track an object within a video sequence, one aims to locate the relative change of position in the
video frames; to analyze the expression of a face in an image, it is more desirable to locate the
facial landmarks for further analysis; to understand human actions in visual data, the first essential
step would be to extract the human body pose. While far from an exhaustive list, these problems
are examples of a very general problem in computer vision — extracting the geometry that can
accurately describe the image data, as well as finding the transformations between such extracted
geometric representations so that the computer vision algorithms can understand the image data
much more efficiently.

The essential step of achieving geometric alignment is to establish pixel correspondences
between images. Correspondences can either refer to (a) physical correspondences that indicate
the same physical point of the same object, or (b) semantic correspondences that indicate two
points on different objects that carry the same semantic meaning, usually encoded as some feature
representation. Established correspondences between two images carry information about the
underlying 3D geometry, which can be more compactly represented by a set of parameters that
describes the 3D structure; in the simpler case of planar objects (e.g. paintings), the geometry
can be represented by a homography transformation. This also builds the foundation of classical
multi-view 3D reconstruction algorithms, which attempt to solve for 3D correspondences by
matching interest points that describe the same physical 3D points.

In this dissertation, we explore learning-based direct methods for registration, where we focus
on homography transformations on images. We show that (a) structured geometric priors can
amount to using less training examples to learn registration, (b) geometric misalignment within an
image dataset can be resolved via a discriminative end-goal objective, and (c) spatial alignment
of objects can be discovered by comparing against an unpaired image dataset via an adversarial
objective. These methods give hint to extensions to more sophisticated warp functions like 3D
geometric shapes so as to register the images together in the actual 3D sense; these will also be
discussed in later chapters of this dissertation.

1.2 3D Reconstruction

Images are a result of 2D projections of the 3D world, but how do we recover what the original
3D structures are from the images? Classical 3D reconstruction methods, such as Structure from
Motion (Sf M) and Simultaneous Localization and Mapping (SLAM), utilize core concepts of
multiple view geometry [58] to constrain the possible solutions of 3D structures that can be
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explained by different viewpoints of the 3D object or scene. When only a single view of the same
object or scene is available, however, 3D reconstruction becomes an ill-posed problem, since
there can potentially be multiple solutions to the 3D structure occluded by the camera viewpoint.
In this case, learning-based approaches can come to the rescue, especially methods utilizing the
power of deep neural networks. The most straightforward way is to supervise a 3D prediction
network with the 3D ground truth data associated with the image samples. Albeit simple, however,
such paired datasets require carefully crafted 3D models and manual alignment with the images,
which are extremely difficult to come by. Many works have resorted to 3D object datasets such
as ShapeNet [16], in which case image data can be created through rendering engines for free;
however, such 3D object datasets are usually limited in the variations of shapes and appearances,
which typically cannot sufficiently represent the actual distributions in the real world.

Compared to ground-truth 3D annotations such as crafted CAD models, images and videos
come in as more abundant sources of data to learn from. Therefore, instead of directly learning
from available 3D geometry, it is of major interest to learn 3D reconstruction indirectly by learning
to establish pixel correspondences between 2D image observations, physically or semantically. In
order to utilize the images and videos as a source of self-supervision for neural networks, there has
been various efforts on making the rendering operation differentiable [83, 109, 131, 177]. This
allows the shape prediction networks to be trained end-to-end using more scalable supervisory
signals. A very common assumption of learning 3D reconstruction without 3D supervision is
that multiple observations of the same instance are available during training, so that multi-view
supervision can be applied during training by enforcing the 3D shape prediction to be explainable
from all the viewpoints. For learning object shapes, however, it is still somewhat impractical to
obtain such multi-view silhouette annotations, which is especially difficult for real-world data.

In this dissertation, we explore learning-based 3D shape reconstruction methods without the
use of explicit 3D supervision. We also investigate into various differentiable and neural rendering
methods for different 3D representations. We show that (a) generalizable 3D shape reconstruction
can be trained from a dataset of multi-view depth images, and (b) in a more advanced setting, 3D
shape reconstruction can be trained from single-view static images using a clever design of neural
rendering to discover semantic correspondences for resolving shape ambiguities, thus lifting the
ill-posedness of the problem. These methods allow us to learn 3D shape priors parametrized by
neural networks that can be trained at scale from practical image datasets, such as ImageNet [31].

1.3 3D Registration & Reconstruction

Simultaneously solving for the 3D geometric structures and localizing the camera frames has been
a long-standing chicken-and-egg problem in computer vision. In order to recover the 3D structures,
accurate camera poses that underlie need to be known a priori; to localize the cameras, on the
other hand, one needs to establish reliable correspondences with respect to the 3D structures so as
to optimize for the 6-DoF transformation in the 3D world. Structure from Motion (Sf M) [153] and
Simultaneous Localization and Mapping (SLAM) [4, 13, 27, 36, 204] are indirect methods for the
problem. At a high level, Sf M and SLAM methods associate multiple image observations together
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by establishing reliable pixel correspondences [58]. This is achieved by detecting salient interest
points in the images (e.g. with SIFT descriptors [115]) and matched with k-nearest neighbors.
Once the point correspondences are established, one can recover the relative camera poses from
the essential matrix and triangulate the sparse 3D structures from the pixel correspondences; if the
3D correspondences are given, solving for the poses becomes a Perspective-n-point problem [95].
As this alternation process is sensitive to the quality of local registration and easily falls into
suboptimal solutions, a geometric bundle adjustment (BA) is typically required to jointly optimize
for the 3D structures and the camera poses.

Sf M and SLAM are indirect methods in the sense that correspondences are indirectly estab-
lished from salient interest points in the images. Modern pipelines following such route have
achieved tremendous success; however, they often suffer at textureless regions and repetitive pat-
terns, where distinctive keypoints cannot be reliably detected. Direct methods, on the other hand,
do not rely on such distinctive keypoints — every pixel can contribute to maximizing photometric
consistency, leading to improved robustness in sparsely textured environments [187]. One major
class of direct methods is photometric bundle adjustment [4, 55], which aims to maximize the
reprojection consistency between different frames by directly comparing pixel intensities. These
also allow dense image descriptors to be adopted for increased robustness at a pixel level [3].

In this dissertation, we explore using neural networks for photometric bundle adjustment
frameworks of objects and scenes. We show that (a) given an object-centric video sequence, one
can use a pretrained shape prior as a learned constraint to refine and register 3D shapes at test time,
and (b) given a video sequence of an arbitrary scene, one can use a generic 3D volume rendering
prior to learn a 3D scene representation while also optimizing for the camera poses. Not only can
we recover the relative poses, but we can also recover dense 3D structures of object and scenes, in
contrast to classical Sf M and SLAM methods that only return sparse 3D structures.

1.4 Dissertation Organization

Fig. 1.2 provides a visual overview of the dissertation and the specific topics to be discussed.
We break down the dissertation into three parts: learning-based methods for image registration
(Part I), dense 3D reconstruction (Part II), and finally the joint problem of 3D registration and
reconstruction (Part III). In detail, we organize the thesis as follows.

Learning image registration (Part I). In Chapter 2, we revisit the renowned Lucas-Kanade
(LK) algorithm [116] for image alignment and establish a theoretical connection with Supervised
Descent Method (SDM) [199], a learning-based alignment algorithm. We identify that the
objective function of LK comes with a built-in geometric prior that results in a reduction of
variable parameters. Following SDM to learn such parameters through a conditional objective
with the geometric prior in LK, our learning-based alignment method, which we term Conditional
LK [100], becomes more effective with less training data. This shows the importance of factorizing
known geometry in learning problems and the benefits of optimizing through a structured objective.
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Figure 1.2: A visual overview of this dissertation.

To add to the evidence, in Chapter 3, we show that spatial alignment within image data can
be automatically discovered end-to-end through a discriminative objective (e.g. classification).
We make another theoretical connection of the LK algorithm, this time with Spatial Transformer
Networks (STNs) [71]. We show that visual recognition can be learned more effectively if the
spatial misalignment were explicitly resolved instead of tolerated as in most ConvNets. Termed
Inverse Compositional STN [99], our proposed method automatically learns the optimal recurrent
spatial transformations with boosted recognition performance with the same network capacities.
This again shows that factorizing known geometry to achieve spatial invariance increases learning
efficiency of deep networks.

In Chapter 4, we further show that geometric alignment can be learned in an unsupervised,
generative setting. We utilize the power of Generative Adversarial Networks (GANs) [48] to
learn a sequence of spatial transformations, resulting in geometric configurations that match a
realistic distribution of image data. We refer to this as Spatial Transformer Generative Adversarial
Networks (ST-GAN) [102] and demonstrate the effects of our approach on the application of
image compositing. More importantly, it give hints to how one could potentially extend the
geometric transformations to 3D reconstruction, such that dense 3D shapes could learn to be
reconstructed in an adversarial fashion so as to match the given set of 2D image observations.

The following is the relevant publication list for each chapter.

1. Chapter 2 — Lin et al., “The Conditional Lucas & Kanade Algorithm”, ECCV 2016 [100].
(https://chenhsuanlin.bitbucket.io/conditional-LK)
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2. Chapter 3 — Lin et al., “Inverse Compositional Spatial Transformer Networks”, CVPR
2017 [99].
(https://chenhsuanlin.bitbucket.io/inverse-compositional-STN)

3. Chapter 4 — Lin et al., “ST-GAN: Spatial Transformer Generative Adversarial Networks
for Image Compositing”, CVPR 2018 [102].
(https://chenhsuanlin.bitbucket.io/spatial-transformer-GAN)

Learning dense 3D reconstruction (Part II). We turn to the problem of dense 3D reconstruc-
tion in Chapter 5, where we focus on object shape reconstruction. We discuss a simple case of
3D reconstruction as dense point cloud generation learned without 3D supervision [101]. The
problem is posed as a novel-view synthesis problem of depth, such that the observed depth from
different viewpoints have to agree consistently. We show that compared to naïve depth regression
as a function of viewpoints, learning is more efficient by explicitly transforming and rendering
the reconstruction with a novel differentiable point cloud renderer. This again highlights the
importance of exploiting known geometry, as well as an example of how differentiable rendering
can play a key role in multi-view reconstruction.

In Chapter 6, we take a further step of eliminating geometric supervision (e.g. depth observa-
tions). We make advances on learning dense 3D object reconstruction from single images and
silhouettes, without the knowledge of the underlying shape structure or topology. To this end, we
derive a formulation to learn signed distance functions (SDF) as the shape representation from
silhouettes as a source of rich geometric supervision. In addition, we show that using differentiable
ray marching [161] for rendering allows discovery of semantic correspondences between different
static images, allowing SDF-SRN to train from only single observations of each object instance.

The following is the relevant publication list for each chapter.

4. Chapter 5 — Lin et al., “Learning Efficient Point Cloud Generation for Dense 3D Object
Reconstruction”, AAAI 2018 [101].
(https://chenhsuanlin.bitbucket.io/3D-point-cloud-generation)

5. Chapter 6 — Lin et al., “SDF-SRN: Learning Signed Distance 3D Object Reconstruction
from Static Images”, NeurIPS 2020 [104].
(https://chenhsuanlin.bitbucket.io/signed-distance-SRN)

Learning 3D registration and reconstruction (Part III). In Chapter 7, we take a further step
of eliminating geometric supervision (e.g. depth observations). We bridge the gap between dense
3D object reconstruction with planar image alignment and show that, using meshes as the 3D
representation, the problem can be posed as a piece-wise 2D image alignment problem from
multiple views in a video sequence [103]. By combining multi-view geometric knowledge and
a learned 3D shape prior, we show that accurate 3D reconstruction of objects is possible by
optimizing for photometric consistency between video frames, without the need of additional
geometric constraints. Enabling explicit 3D reconstruction from RGB-only images is another step
towards alleviating the need of impractical supervision sources.
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Finally, we show in Chapter 8 that we can go beyond shape priors and to incorporate a
more generic rendering prior for arbitrary scenes. We show that we can learn Neural Radiance
Fields (NeRF) [126] from imperfect or even unknown camera poses –— the joint problem of
reconstructing the 3D scene and registering the camera poses. We draw inspiration from the
success of classical image alignment methods and establish a theoretical connection, showing
that coarse-to-fine registration is also critical to NeRF. To this end, we present Bundle-Adjusting
NeRF (BARF), a simple yet effective strategy for coarse-to-fine registration on coordinate-based
scene representations. BARF can be regarded as a type of photometric bundle adjustment (BA)
using view synthesis as the proxy objective. Unlike traditional BA, however, BARF can learn
the scene representation from scratch, lifting the reliance of local registration subprocedures and
allowing for more generic applications.

The following is the relevant publication list for each chapter.

6. Chapter 7 — Lin et al., “Photometric Mesh Optimization for Video-Aligned 3D Object
Reconstruction”, CVPR 2019 [103].
(https://chenhsuanlin.bitbucket.io/photometric-mesh-optim)

7. Chapter 8 — Lin et al., “BARF: Bundle-Adjusting Neural Radiance Fields”, in submis-
sion [105].
(https://chenhsuanlin.bitbucket.io/bundle-adjusting-NeRF)
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Part I

Learning-based Image Registration
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Chapter 2

Structured Optimization for Efficient
Registration

2.1 Introduction

The Lucas-Kanade (LK) algorithm [116] has been a popular approach for tackling dense align-
ment problems for images and objects. At the heart of the algorithm is the assumption that an
approximate linear relationship exists between pixel appearance and geometric displacement.
Such a relationship is seldom exactly linear, so a linearization process is typically repeated until
convergence. Pixel intensities are not deterministically differentiable with respect to geometric
displacement; instead, the linear relationship must be established stochastically through a learning
process. One of the most notable properties of the LK algorithm is how efficiently this linear
relationship can be estimated. This efficiency stems from the assumption of independence across
pixel coordinates — the parameters describing this linear relationship are classically referred to
as image gradients. In practice, these image gradients are estimated through finite differencing
operations. Numerous extensions and variations upon the LK algorithm have subsequently been
explored in literature [9], and recent work has also demonstrated the utility LK [3, 5, 15] using
classical dense descriptors such as dense SIFT [115], HOG [25], and LBP [133].

A drawback to the LK algorithm and its variants, however, is its generative nature. Specifically,
it attempts to synthesize how appearance changes as a function of geometric displacement
through a linear model, even though its end goal is the inverse problem. Recently, Xiong
& De la Torre [199, 200, 201] proposed a new approach to image alignment known as the
Supervised Descent Method (SDM). SDM shares similar properties with the LK algorithm as it
also attempts to establish the relationship between appearance and geometric displacement using
a sequence of linear models. One marked difference, however, is that SDM directly learns how
geometric displacement changes as a function of appearance. This can be viewed as estimating the
conditional likelihood function p(y|x), where y and x are geometric displacement and appearance
respectively. As reported in literature [73] (and also confirmed by our own experiments), this can
lead to substantially improved performance over classical LK as the learning algorithm is focused
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directly on the end goal (i.e. estimating geometric displacement from appearance).

Although it exhibits many favorable properties, SDM also comes with disadvantages. Specif-
ically, due to its non-generative nature, SDM cannot take advantage of the pixel independence
assumption enjoyed through classical LK (see Section 2.4 for a full treatment on this asymmetric
property). Instead, it needs to model full dependence across all pixels, which requires: (i) a large
amount of training data, and (ii) the requirement of adhoc regularization strategies in order to
avoid a poorly conditioned linear system. Furthermore, SDM does not utilize prior knowledge of
the type of geometric warp function being employed (e.g. similarity, affine, homography, point
distribution model, etc.), which further simplifies the learning problem in classical LK.

In this chapter, we propose a novel approach which, like SDM, attempts to learn a linear
relationship between geometric displacement directly as a function of appearance. However,
unlike SDM, we enforce that the pseudo-inverse of this linear relationship enjoys the generative
independence assumption across pixels while utilizing prior knowledge of the parametric form
of the geometric warp. We refer to our proposed approach as the Conditional LK algorithm.
Experiments demonstrate that our approach achieves comparable, and in many cases better,
performance to SDM across a myriad of tasks with substantially less training examples. We
also show that our approach does not require any adhoc regularization term, and it exhibits a
unique property of being able to “swap” the type of warp function being modeled (e.g. replace
a homography with an affine warp function) without the need to retrain. Finally, our approach
offers some unique theoretical insights into the redundancies that exist when attempting to learn
efficient object/image aligners through a conditional paradigm.

Notations. We define our notations throughout the paper as follows: lowercase boldface symbols
(e.g. x) denote vectors, uppercase boldface symbols (e.g. R) denote matrices, and uppercase
calligraphic symbols (e.g. I) denote functions. We treat images as a function of the warp
parameters, and we use the notations I(x) : R2 → RK to indicate sampling of the K-channel
image representation at subpixel location x = [x, y]>. Common examples of multi-channel image
representations include descriptors such as dense SIFT, HOG and LBP. We assume K = 1 when
dealing with raw grayscale images.

2.2 The Lucas-Kanade Algorithm

At its heart, the Lucas-Kanade (LK) algorithm utilizes the assumption that,

I(x + ∆x) ≈ I(x) +∇I(x)∆x . (2.1)

where I(x) : R2 → RK is the image function representation and ∇I(x) : R2 → RK×2 is
the image gradient function at pixel coordinate x = [x, y]. In most instances, a useful image
gradient function ∇I(x) can be efficiently estimated through finite differencing operations. An
alternative strategy is to treat the problem of gradient estimation as a per-pixel linear regression
problem, where pixel intensities are samples around a neighborhood in order to “learn” the
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image gradients [15]. A focus of this chapter is to explore this idea further by examining more
sophisticated conditional learning objectives for learning image gradients.

For a given geometric warp functionW(x; p) : R2 → R2 parameterized by the warp parame-
ters p ∈ RP , one can thus express the classic LK algorithm as minimizing the sum of squared
differences (SSD) objective,

min
∆p

D∑
d=1

∥∥∥∥I(W(xd; p)) +∇I(W(xd; p))
∂W(xd; p)

∂p
∆p− T (xd)

∥∥∥∥2

2

, (2.2)

which can be viewed as a quasi-Newton update. The parameter p is the initial warp estimate, ∆p
is the warp update being estimated, and T is the template image we desire to align the source
image I against. The pixel coordinates {xd}Dd=1 are taken with respect to the template image’s
coordinate frame, and ∂W(x;p)

∂p
: R2 → R2×P is the warp Jacobian. After solving Equation 2.2, the

current warp estimate has the following additive update,

p← p + ∆p . (2.3)

As the relationship between appearance and geometric deformation is not solely linear, Equa-
tions 2.2 and 2.3 must be applied iteratively until convergence is achieved.

Inverse compositional fitting. The canonical LK formulation presented in the previous section
is sometimes referred to as the forwards additive (FA) algorithm [9]. A fundamental problem with
the forwards additive approach is that it requires recomputing the image gradient and warp Jaco-
bian in each iteration, greatly impacting computational efficiency. Baker and Matthews [9] devised
a computationally efficient extension to forwards additive LK, namely the inverse compositional
(IC) algorithm. The IC-LK algorithm attempts to iteratively solve the objective

min
∆p

D∑
d=1

∥∥∥∥I(W(xd; p))− T (xd)−∇T (xd)
∂W(xd; 0)

∂p
∆p

∥∥∥∥2

2

, (2.4)

followed by the inverse compositional update

p← p ◦ (∆p)−1 , (2.5)

where we have abbreviated the notation ◦ to be the composition of warp functions parametrized
by p, and (∆p)−1 to be the parameters of the inverse warp function parametrized by ∆p. We can
express Equation 2.4 in vector form as

min
∆p
‖I(p)− T (0)−W∆p‖2

2 , (2.6)

where

W =

∇T (x1) . . . 0
... . . . ...
0 . . . ∇T (xD)



∂W(x1;0)

∂p
...

∂W(xD;0)
∂p
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and

I(p) =

I(W(x1; p))
...

I(W(xD; p))

 , T (0) =

T (W(x1; 0))
...

T (W(xD; 0))

 .
Here, p = 0 is considered the identity warp (i.e. W(x; 0} = x). It is easy to show that the
solution to Equation 2.6 is given by

∆p = R[I(p)− T (0)], (2.7)

where R = W†. The superscript † denotes the Moore-Penrose pseudo-inverse operator. The IC
form of the LK algorithm comes with a great advantage: the gradients∇T (x) and warp Jacobian
∂W(x;0)

∂p
are evaluated at the identity warp p = 0, regardless of the iterations and the current state

of p. This means that R remains constant across all iterations, making it advantageous over other
variants in terms of computational complexity. For the rest of this chapter, we shall focus on the
IC form of the LK algorithm.

2.3 Supervised Descent Method

Despite exhibiting good performance on many image alignment tasks, the LK algorithm can be
problematic to use when there is no specific template image T to align against. For many appli-
cations, one may be given just an ensemble of M ground-truth images and warps {Im,pm}Mm=1

of the object of interest. If one has prior knowledge of the distribution of warp displace-
ments to be encountered, one can synthetically generate N examples to form a much larger
set S = {∆pn, In(pn ◦ ∆pn)}Nn=1 to learn from, where N � M . In these circumstances, a
strategy recently put forward known as the Supervised Descent Method (SDM) [199] has ex-
hibited state-of-the-art performance across a number of alignment tasks, most notably facial
landmark alignment. The approach attempts to directly learn a regression matrix that minimizes
the following SSD objective,

min
R

∑
n∈S

‖∆pn −R[In(pn ◦∆pn)− T (0)]‖2
2 + Ω(R) . (2.8)

The template image T (0) can be learned either with R directly or by taking it to be 1
N

∑
n∈S I(pn),

the average of ground-truth images [201].

Regularization. Ω is a regularization function used to ensure that the solution to R is unique.
To understand the need for this regularization, one can reform Equation 2.8 in matrix form as

min
R
‖Y −RX‖2

F + Ω(R), (2.9)
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where

Y =
[
∆p1, . . . ,∆pN

]
, and

X =
[
I(p1 ◦∆p1)− T (0), . . . , I(pN ◦∆pN)− T (0)

]
.

Here, ‖·‖F indicates the matrix Frobenius norm. Without the regularization term Ω(R), the
solution to Equation 2.9 is R = YX>(XX>)−1. It is understood that raw pixel representations of
natural images stem from certain frequency spectrums [159] that leads to an auto-covariance matrix
XX> which is poorly conditioned in nearly all circumstances. It has been demonstrated [159]
that this property stems from the fact that image intensities in natural images are highly correlated
in close spatial proximity, but this dependence drops off as a function of spatial distance.

In our experiments, we have found that XX> is always poorly conditioned even when utilizing
other image representations such as dense SIFT, HOG, and LBP descriptors. As such, it is clear
that some sort of regularization term is crucial for effective SDM performance. As commonly
advocated and practiced, we employed a weighted Tikhonov penalty term Ω(R) = λ ‖R‖2

F , where
λ controls the weight of the regularizer. We found this choice to work well in our experiments.

Iteration-specific regressors. Unlike the IC-LK approach, which employs a single regres-
sor/template pair {R, T (0)} to be applied iteratively until convergence, SDM learns a set of
regressor/template pairs {R(l), T (l)(0)}Ll=1 for each iteration l = 1 : L (sometimes referred to
as layers). On the other hand, like the IC-LK algorithm, these regressors are precomputed in
advance and thus are independent of the current image and warp estimate. As a result, SDM is
computationally efficient just like IC-LK. The regressor/template pair {R(l), T (l)(0)} is learned
from the synthetically generated set S(l) within Equation 2.8, which we define to be

S(l) = {∆p(l)
n , I(pn ◦∆p(l)

n )}Nn=1, (2.10)

where

∆p(l+1) ← R(l)
[
I
(
p ◦ (∆p(l))−1

)
− T (0)

]
. (2.11)

For the first iteration (l = 1), the warp perturbations are generated from a pre-determined random
distribution; for every subsequent iteration, the warp perturbations are re-sampled from the same
distribution to ensure each iteration’s regressor does not overfit. Once learned, SDM is applied by
employing Equation 2.11 in practice.

Inverse compositional warps. It should be noted that there is nothing in the original treat-
ment [199] on SDM that limits it to compositional warps. In fact, the original work employing
facial landmark alignment advocated an additive update strategy. Here, we have chosen to employ
inverse compositional warp updates as: (i) we obtained better results for our experiments with
planar warp functions, (ii) we observed almost no difference in performance for non-planar warp
functions such as those involved in face alignment, and (iii) it is only through the employment of
inverse compositional warps within the LK framework that a firm theoretical motivation for fixed
regressors can be entertained. Furthermore, we have found that keeping a close mathematical
relationship to the IC-LK algorithm is essential for the motivation of our proposed approach.
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2.4 The Conditional Lucas-Kanade Algorithm

Although enjoying impressive results across a myriad of image alignment tasks, SDM does have
disadvantages when compared to IC-LK. First, it requires large amounts of synthetically warped
image data. Second, it requires the utilization of an adhoc regularization strategy to ensure good
condition of the linear system. Third, the mathematical properties of the warp function parameters
being predicted is ignored. Finally, it reveals little about the actual degrees of freedom necessary
in the set of regressor matrices being learned through the SDM process.

Here, we propose an alternative strategy to directly learn a set of iteration-specific regressors,

min
∇T (0)

∑
n∈S

‖∆pn −R[I(pn ◦∆pn)− T (0)]‖2
2 (2.12)

such that R =


∇T (x1) . . . 0

... . . . ...
0 . . . ∇T (xD)



∂W(x1;0)

∂p
...

∂W(xD;0)
∂p



†

,

where

∇T (0) =

∇T (x1)
...

∇T (xD)

 .

At first glance, this objective may seem strange, as we are proposing to learn template “image
gradients” ∇T (0) within a conditional objective. As previously discussed in [15], this idea
deviates from the traditional view of what image gradients are — parameters that are derived from
heuristic finite differencing operations. Here, we prefer to subscribe to the alternate view that
image gradients are simply weights that can be, and should be, learned from data. The central
motivation for this objective is to enforce the parametric form of the generative IC-LK form
through a conditional objective.

An advantage of the Conditional LK approach is the reduced number of model parameters.
Comparing the model parameters of Conditional LK (∇T (0) ∈ RKD×2) against SDM (R ∈
RP×KD), there is a reduction in the degrees of freedom needing to be learned for most warp
functions where P > 2 . More fundamentally, however, is the employment of the generative pixel
independence assumption described originally in Equation 2.1. This independence assumption is
useful as it ensures that a unique R can be found in Equation 2.12 without any extra penalty terms
such as Tikhonov regularization. In fact, we propose that the sparse matrix structure of image
gradients within the pseudo-inverse of R acts as a much more principled form of regularization
than those commonly employed within the SDM framework.

A further advantage of our approach is that, like the IC-LK framework, it utilizes prior
knowledge of the warp Jacobian function ∂W(x;0)

∂p
during the estimation of the regression matrix

R. Our insight here is that the estimation of the regression matrix R using a conditional learning
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objective should be simplified (in terms of the degrees of freedom to learn) if one had prior
knowledge of the deterministic form of the geometric warp function.

A drawback to the approach, in comparison to both the SDM and IC-LK frameworks, is
the non-linear form of the objective in Equation 2.12. This requires us to resort to non-linear
optimization methods, which are not as straightforward as linear regression solutions. However,
as we discuss in more detail in the experimental portion of this chapter, we demonstrate that
a Levenberg-Marquardt optimization strategy obtains good results in nearly all circumstances.
Furthermore, compared to SDM, we demonstrate good solutions can be obtained with significantly
smaller numbers of training samples.

Iteration-specific regressors. As with SDM, we assume we have an ensemble of images and
ground-truth warps {Im,pm}Mm=1 from which a much larger set of synthetic examples can be
generated S = {∆pn, In(pn ◦∆pn)}Nn=1, where N �M . Like SDM, we attempt to learn a set
of regressor/template pairs {R(l), T (l)(0)}Ll=1 for each iteration l = 1 : L. The set S(l) of training
samples is derived from Equations 2.10 and 2.11 for each iteration. Once learned, the application
of these iteration-specific regressors is identical to SDM.

Pixel independence assumption. A major advantage of the IC-LK framework is that it assumes
generative independence across pixel coordinates (see Equation 2.1). A natural question to ask is:
could not one predict geometric displacement (instead of appearance) directly across independent
pixel coordinates?

The major drawback to employing such strategy is its ignorance of the well-known “aperture
problem” [119] in computer vision (e.g. the motion of an image patch containing a sole edge
cannot be uniquely determined due to the ambiguity of motion along the edge). As such, it is
impossible to ask any predictor (linear or otherwise) to determine the geometric displacement of
all pixels within an image while entertaining an independence assumption. The essence of our
proposed approach is that it circumvents this issue by enforcing global knowledge of the template’s
appearance across all pixel coordinates, while entertaining the generative pixel independence
assumption that has served the LK algorithm so well over the last three decades.

Generative LK. For completeness, we will also entertain a generative form of our objective in
Equation 2.12, where we instead learn “image gradients” that predict generative appearance as a
function of geometric displacement, formulated as

min
∇T (0)

∑
n∈S

‖I(pn ◦∆pn)− T (0)−W∆pn‖2
2 (2.13)

s.t.W =

∇T (x1) . . . 0
... . . . ...
0 . . . ∇T (xD)



∂W(x1;0)

∂p
...

∂W(xD;0)
∂p

 .

17



x gradients learned with Generative LK

x gradients learned with Conditional LK

y gradients learned with Generative LK

y gradients learned with Conditional LK

x gradients taken from finite differences y gradients taken from finite differences

Template image appearance

Figure 2.1: Visualization of the learned image gradients for LK from layers 1 (left) to 5 (right).

Unlike our proposed Conditional LK, the objective in Equation 2.13 is linear and directly solvable.
Furthermore, due to the generative pixel independence assumption, the problem can be broken
down into D independent sub-problems. The Generative LK approach is trained in an identical
way to SDM and Conditional LK, where iteration-specific regressors are learned from a set of
synthetic examples S = {∆pn, In(pn ◦∆pn)}Nn=1.

Figure 2.1 provides an example of visualizing the gradients learned from the Conditional LK
and Generative LK approaches. Note that the Conditional LK gradients get sharper over regression
iterations, while it is not necessarily the case for Generative LK. The rationale for including the
Generative LK form is to highlight the importance of a conditional learning approach, and to
therefore justify the added non-linear complexity of the objective in Equation (2.12).

2.5 Experiments

In this section, we present results for our approach across three diverse tasks: (i) planar image
alignment, (ii) planar template tracking, and (iii) facial model fitting. We also investigate the
utility of our approach across different image representations such as raw pixel intensities and
dense LBP descriptors.
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Figure 2.2: Visualization of the perturbed samples S = {∆pn, In(pn◦∆pn)}Nn=1 used for training
the SDM, Conditional LK, and Generative LK methods. Left: the original source image, where
the red box is the ground truth and the green boxes are perturbed for training. Right: examples of
the synthesized training samples.

2.5.1 Planar Image Alignment

Experimental settings. In this experiment, we utilize a subsection of the Multi-PIE [50] dataset.
For each image, we denote a 20× 20 image I(p) with ground-truth warp p rotated, scaled and
translated around hand-labeled locations. For the IC-LK approach, this image is then employed as
the template T (0). For the SDM, Conditional LK and Generative LK methods, a synthetic set of
geometrically perturbed samples S are generated S = {∆pn, In(pn ◦∆pn)}Nn=1.

We generate the perturbed samples by adding i.i.d. Gaussian noise of standard deviation σ to
the four corners of the ground-truth bounding box as well as an additional translational noise from
the same distribution, and then finally fitting the perturbed box to the warp parameters ∆p. In our
experiments, we choose σ = 1.2 pixels. Figure 2.2 shows an example visualization of the training
procedure as well as the generated samples. For SDM, a Tikhonov regularization term is added to
the training objective as described in Section 2.3, and the penalty factor λ is chosen by evaluating
on a separate validation set; for Conditional LK, we use Levenberg-Marquardt to optimize the
non-linear objective where the parameters are initialized through the Generative LK solution.

Frequency of Convergence. We compare the alignment performance of the four types of
aligners in our discussion: (i) IC-LK, (ii) SDM, (iii) Generative LK, and (iv) Conditional LK. We
state that convergence is reached when the point RMSE of the four corners of the bounding box is
less than one pixel.

Figure 2.3 shows the frequency of convergence tested with both a 2D affine and homography
warp function. Irrespective of the planar warping function, our results indicate that Conditional
LK has superior convergence properties over the others. This result holds even when the approach
is initialized with a warp perturbation that is larger than the distribution it was trained under. The
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Figure 2.3: Frequency of convergence comparison between IC-LK, SDM, Generative LK, and
Conditional LK. The vertical dotted line indicates σ that they were trained with.

Figure 2.4: Frequency of convergence comparison between SDM, Generative LK, and Conditional
LK in terms of number of samples trained with.

alignment performance of Conditional LK is consistently better in all circumstances, although the
advantage of the approach is most noticeable when training with just a few training samples.

Figure 2.4 provides another comparison with respect to the amount of training data. It can
be observed that SDM is highly dependent on the amount of training data available, but it is still
not able to generalize as well as Conditional LK. This is also empirical proof that incorporating
principled priors in Conditional LK is more desirable than adhoc regularizations in SDM.

Convergence Rate. We also provide some analysis on the convergence speed. To make a fair
comparison, we take the average of only those test runs where all regressors converged. Figure 2.5
illustrates the convergence rates of different regressors learned from different amounts of training
data. The improvement of Conditional LK in convergence speed is clear, especially when little
training data is provided. SDM starts to exhibit faster convergence rate when learned from over
100 examples per layer; however, Conditional LK still surpasses SDM in term of the frequency of
final convergence.
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Figure 2.5: Convergence rate comparison between IC-LK, SDM, Generative LK, and Conditional
LK, averaged from the tests (σ = 2.8) where all four converged in the end.

Swapping Warp Functions. A unique property of Conditional LK in relation to SDM is its
ability to interchange between warp functions after training. Since we are learning image gradients
∇T (0) for the Conditional LK algorithm, one can essentially choose which warp Jacobian to
be employed before forming the regressor R. Figure 2.6 illustrates the effect of Conditional LK
learning the gradient with one type of warp function and swapping it with another during testing.
We see that whichever warp function Conditional LK is learned with, the learned conditional
gradients are also effective on the other and still outperforms IC-LK and SDM.

It is interesting to note that when we learn the Conditional LK gradients using either 2D planar
similarity warps (P = 4) or homography warps (P = 8), the performance on 2D planar affine
warps (P = 6) is as effective. This outcome leads to an important insight: it is possible to learn
the conditional gradients with a simple warp function and replace it with a more complex one
afterwards; this can be especially useful when certain types of warp functions (e.g. 3D warp
functions) are harder to come by.

2.5.2 Planar Tracking with LBP Features

In this section, we show how Conditional LK can be effectively employed with dense multi-
channel LBP descriptors whereK = 8. First we analyze the convergence properties of Conditional
LK on the dense LBP descriptors, as we did similarly in the previous section, and then we present
an application to robust planar tracking. A full description of the multi-channel LBP descriptors
we used in our approach can be found in [3].

Figure 2.7 provides a comparison of robustness by evaluating the frequency of convergence
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Figure 2.6: Frequency of convergence comparison between IC-LK, SDM, and Conditional LK
trained with 100 examples per layer and tested with swapped warp functions. The parentheses
indicate the type of warp function trained with.

Figure 2.7: Frequency of convergence comparison between IC-LK, SDM and Conditional LK
with dense binary descriptors. The vertical dotted line indicates σ that they were trained with.

with respect to the scale of test warps σ. This suggests that Conditional LK is as effective in the
LK framework with multi-channel descriptors: in addition to increasing alignment robustness
(which is already a well-understood property of descriptor image alignment), Conditional LK is
able to improve upon the sensitivity to initialization with larger warps.

Figure 2.8 illustrates alignment performance as a function of the number of training samples.
We can see the Conditional LK only requires as few as 20 examples per layer to train a better multi-
channel aligner than IC-LK, whereas SDM needs more than 50 examples per iteration-specific
regressor. This result again speaks to the efficiency of learning with Conditional LK.

Low Frame-rate Template Tracking. In this experiment, we evaluate the advantage of our
proposed approach for the task of low frame-rate template tracking. Specifically, we borrow
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Figure 2.8: Frequency of convergence comparison between SDM and Conditional LK with dense
binary descriptors in terms of number of samples trained with.

Figure 2.9: Tracking performance using IC-LK and Conditional LK with dense LBP descriptors
for three videos under low frame-rate conditions, with and without lighting variations.

a similar experimental setup to Bit-Planes [3]. LBP-style dense descriptors are ideal for this
type of task as their computation is computationally feasible in real-time across a number of
computational platforms (unlike HOG or dense SIFT). Further computational speedups can be
entertained if we start to skip frames to track.

We compare Conditional LK against IC-LK and run the experiments on the videos collected
in [3]. We train the Conditional LK tracker on the first frame with 20 synthetic examples. During
tracking, we skip every k frames to simulate low frame-rate videos. Figure 2.9 illustrates the
percentage of successfully tracked frames over the number of skipped frames k. It is clear that the
Conditional LK tracker is more stable and tolerant to larger displacements between frames.

Figure 2.10 shows some video snapshots, including the frames where the IC-LK tracker starts
to fail but the Conditional LK tracker remains. This further demonstrates that the Conditional LK
tracker maintains the same robustness to brightness variations by entertaining dense descriptors,
but meanwhile improves upon convergence. Enhanced susceptibility to noises both in motion and
brightness also suggests possible extensions to a wide variety of tracking applications.

2.5.3 Facial Model Fitting

In this experiment, we show how Conditional LK is applicable not only to 2D planar warps like
affine or homography, but also to more complex warps that requires heavier parametrization.
Specifically, we investigate the performance of our approach with a point distribution model
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Figure 2.10: Snapshots of tracking results. Blue: IC-LK; yellow: Conditional LK. The second
image of each row shows where IC-LK fails but Conditional LK still holds.

(a) (b) (c)

Figure 2.11: (a) An example of facial model fitting. The red shape indicates the initialization, and
the green shape is the final fitting result. (b) Convergence rate comparison between IC-LK and
Conditional LK. (c) Comparison of fitting accuracy.

(PDM) [120] on the IJAGS dataset [120], which contains an assortment of videos with hand-
labeled facial landmarks. We utilize a pretrained 2D PDM learned from all labeled data as the
warp Jacobian and compare the Conditional LK approach against IC-LK (it has been shown that
there is an IC formulation to facial model fitting [120]). For Conditional LK, we learn a series of
regressor/template pairs with 5 examples per layer; for IC-LK, the template image is taken by the
mean appearance.

Figure 2.11 shows the results of fitting accuracy and convergence rate of subject-specific
alignment measured in terms of the point-to-point RMSE of the facial landmarks; it is clear that
Conditional LK outperforms IC-LK in convergence speed and fitting accuracy. This experiment
highlights the possibility of extending our proposed Conditional LK to more sophisticated warps.
We would like to note that it is possible to take advantage of the Conditional LK warp swapping
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property to incorporate a 3D PDM as to introduce 3D shape modeling; this is beyond the scope of
discussion of this dissertation.

2.6 Conclusion

In this chapter, we discuss the advantages and drawbacks of the LK algorithm in comparison
to SDMs. We argue that by enforcing the pixel independence assumption into a conditional
learning strategy we can devise a method that: (i) utilizes substantially less training examples, (ii)
offers a principled strategy for regularization, and (iii) offers unique properties for adapting and
modifying the warp function after learning. Experimental results demonstrate that the Conditional
LK algorithm outperforms both the LK and SDM algorithms in terms of convergence. We also
demonstrate that Conditional LK can be integrated with a variety of applications that potentially
leads to other exciting avenues for investigation.

2.A Appendix: Math Derivations

We describe the derivation and a few optimization details of the proposed Conditional LK
algorithm. For convenience, we repeat the objective here,

min
∇T (0)

∑
n∈S

‖∆pn −R[I(pn ◦∆pn)− T (0)]‖2
2 (2.14)

s.t.R =


∇T (x1) . . . 0

... . . . ...
0 . . . ∇T (xD)



∂W(x1;0)

∂p
...

∂W(xD;0)
∂p



†

,

where

∇T (0) =

∇T (x1)
...

∇T (xD)


is the compact form of the template “image gradients” we want to learn. For simplicity, we further
denote g = vec(∇T (0)) ∈ R2KD to be the vectorized form of ∇T (0), and we use R(g) here
instead of R to emphasize it is a function of g. Thus we can rewrite Equation 2.14 as

min
g

∑
n∈S

‖sn −R(g)[I(pn ◦∆pn)− T (0)]‖2
2 (2.15)

s.t.R(g) =

(
G(g)

∂W(x; 0)

∂p

)†
,
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where

G(g) = G (∇T (0)) =

∇T (x1) . . . 0
... . . . ...
0 . . . ∇T (xD)

 .

We can expand the pseudo-inverse form of R(g) to be

R(g) = (H(g))−1

(
∂W(x; 0)

∂p

)>
G(g)>, (2.16)

where

H(g) =

(
∂W(x; 0)

∂p

)>
G(g)>G(g)

∂W(x; 0)

∂p

is the pseudo-Hessian matrix. By the product rule, the derivative of R(g) with respect to the jth
element of g, denoted as gj , becomes

∂R(g)

∂gj
=
∂(H(g))−1

∂gj

(
∂W(x; 0)

∂p

)>
G(g)> + H(g)−1

(
∂W(x; 0)

∂p

)>
Λ>j , (2.17)

where Λj = ∂G(g)
∂gj

is an indicator matrix with only the element in G(g) corresponding to gj being

active. The derivative of (H(g))−1 with respect to gj is readily given as

∂(H(g))−1

∂gj
= − (H(g))−1 ∂H(g)

∂gj
(H(g))−1 , (2.18)

where

∂H(g)

∂gj
=

(
∂W(x; 0)

∂p

)> (
G(g)>Λj + Λ>j G(g)

) ∂W(x; 0)

∂p
. (2.19)

Now that we have obtained explicit expression of ∂R(g)
∂g

, we can optimize g through gradient-
based optimization methods by iteratively solving for ∆g, the updates to g. One can choose to use
first-order methods (batch/stochastic gradient descent) or second-order methods (Gauss-Newton
or Levenberg-Marquardt). In the second-order method case, for examples, we can first rewrite
Equation 2.15 in the vectorized form as

min
g

∑
n∈S

∥∥∆pn −
[
(I(pn ◦∆pn)− T (0))> ⊗ IP

]
vec(R(g))

∥∥2

2
, (2.20)

where IP is the identity matrix of size P . Then the iterative update ∆g is obtained by solving the
least-squares problem

min
∆g

∑
n∈S

∥∥∆pn −
[
(I(pn ◦∆pn)− T (0))> ⊗ IP

]
vec(R (g + ∆g))

∥∥2

2
,
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where vec(R (g + ∆g)) is linearized around g to be

vec(R (g + ∆g)) ≈ vec(R(g)) +
∂vec(R(g))

∂g
∆g .

Finally, the Conditional LK regressors R are formed to be

R = R(g) =

(
G(g)

∂W(x; 0)

∂p

)†
. (2.21)
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Chapter 3

Resolving Misalignment in Image Datasets

3.1 Introduction

Rapid advances in deep learning have allowed for the learning of complex functions through
convolutional neural networks (CNNs), which have achieved state-of-the-art performances in a
plethora of computer vision tasks [59, 90, 160]. Most networks learn to tolerate spatial variations
through: (a) spatial pooling layers and/or (b) data augmentation techniques [158]; however, these
approaches come with several drawbacks. Data augmentation (i.e. the synthetic generation of new
training samples through geometric perturbations according to a known noise model) is probably
the best known strategy for increasing spatial tolerance within a visual learning system. This is
problematic as it can often require an exponential increase in the number of training samples and
thus the capacity of the model to be learned. Spatial pooling operations can partially alleviate
this problem as they naturally encode spatial invariance within the network architecture and uses
sub-sampling to reduce the capacity of the model. However, they have an intrinsic limited range
of tolerance to geometric variation they can provide; furthermore, such pooling operations destroy
spatial details within the images that could be crucial to the performance of subsequent tasks.

Instead of designing a network to solely give tolerance to spatial variation, another option is
to have the network solve for some of the geometric misalignment in the input images [67, 113].
Such a strategy only makes sense, however, if it has lower capacity and computational cost as well
as better performance than traditional spatially invariant CNNs. Spatial Transformer Networks
(STNs) [71] are one of the first notable attempts to integrate low capacity and computationally
efficient strategies for resolving — instead of tolerating — misalignment with classical CNNs.
Jaderberg et al. presented a novel strategy for integrating image warping within a neural network
and showed that such operations are (sub-)differentiable, allowing for the application of canonical
backpropagation to an image warping framework.

The problem of learning a low-capacity relationship between image appearance and geometric
distortion is not new in computer vision. Over three and a half decades ago, Lucas-Kanade
(LK) [116] proposed the seminal algorithm for gradient descent image alignment. The LK
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algorithm can be interpreted as a feed forward network of multiple alignment modules; specifically,
each alignment module contains a low-capacity predictor (typically linear) for predicting geometric
distortion from relative image appearance, followed by an image resampling/warp operation. The
LK algorithm differs fundamentally, however, to STNs in their application: image/object alignment
instead of classification.

Putting applications to one side, the LK and STN frameworks share quite similar characteristics
however with a criticial exception. In an STN with multiple feed-forward alignment modules,
the output image of the previous alignment module is directly fed into the next. As we will
demonstate in this chapter, this is problematic as it can create unwanted boundary effects as
the number of geometric prediction layers increase. The LK algorithm does not suffer from
such problems; instead, it feeds the warp parameters through the network (instead of the warped
image) such that each subsequent alignment module in the network resamples the original input
source image. Furthermore, the Inverse Compositional (IC) variant of the LK algorithm [9] has
demonstrated to achieve equivalently effective alignment by reusing the same geometric predictor
in a compositional update form.

Inspired by the IC-LK algorithm, we advocate an improved extension to the STN framework
that (a) propagates warp parameters, rather than image intensities, through the network, and (b)
employs the same geometric predictor that could be reapplied for all alignment modules. We
propose Inverse Compositional Spatial Transformer Networks (IC-STNs) and show its superior
performance over the original STNs across a myriad of tasks, including pure image alignment and
joint alignment/classification problems.

We organize the chapter as follows: we give a general review of efficient image/object
alignment in Sec. 3.2 and an overview of Spatial Transformer Networks in Sec. 3.3. We describe
our proposed IC-STNs in detail in Sec. 3.4 and show experimental results for different applications
in Sec. 3.5. Finally, we draw to our conclusion in Sec. 3.6.

3.2 Efficient Image & Object Alignment

In this section, we review the nominal approaches to efficient image/object alignment.

3.2.1 The Lucas-Kanade Algorithm

The Lucas-Kanade (LK) algorithm [116] has been a popular approach for tackling dense alignment
problems for images and objects. For a given geometric warp function parameterized by the warp
parameters p, one can express the LK algorithm as minimizing the sum of squared differences
(SSD) objective in the image space,

min
∆p
‖I(p + ∆p)− T (0)‖2

2 , (3.1)
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where I is the source image, T is the template image to align against, and ∆p is the warp
update being estimated. Here, we denote I(p) as the image I warped with the parameters p.
The LK algorithm assumes a approximate linear relationship between appearance and geometric
displacements; specifically, it linearizes (3.1) by taking the first-order Taylor approximation as

min
∆p

∥∥∥∥I(p) +
∂I(p)

∂p
∆p− T (0)

∥∥∥∥2

2

. (3.2)

The warp parameters are thus additively updated through p← p + ∆p, which can be regarded as
a quasi-Newton update. The term ∂I(p)

∂p
, known as the steepest descent image, is the composition

of image gradients and the predefined warp Jacobian, where the image gradients are typically
estimated through finite differences. As the true relationship between appearance and geometry is
seldom linear, the warp update ∆p is iteratively estimated and applied until convergence.

A fundamental problem with the canonical LK formulation, which employs addtive updates of
the warp parameters, is that ∂I(p)

∂p
must be recomputed on the rewarped images for each iteration,

greatly impacting computational efficiency. Baker and Matthews [9] devised a computationally
efficient variant of the LK algorithm, which they referred to as the Inverse Compositional (IC)
algorithm. The IC-LK algorithm reformulates (3.1) to predict the warp update to the template
image instead, written as

min
∆p
‖I(p)− T (∆p)‖2

2 , (3.3)

and the linearized least-squares objective is thus formed as

min
∆p

∥∥∥∥I(p)− T (0)− ∂T (0)

∂p
∆p

∥∥∥∥2

2

. (3.4)

The least-squares solution is given by

∆p =

(
∂T (0)

∂p

)†
(I(p)− T (0)) , (3.5)

where the superscript † denotes the Moore-Penrose pseudo-inverse operator. This is followed by
the inverse compositional update p← p ◦ (∆p)−1, where we abbreviate the notation ◦ to be the
composition of warp functions parameterized by p, and (∆p)−1 is the parameters of the inverse
warp function parameterized by ∆p.

The solutions of (3.2) and (3.4) are in the form of linear regression, which can be more
generically expressed as

∆p = R · I(p) + b, (3.6)

where R is a linear regressor establishing the linear relationship between appearance and geometry,
and b is the bias term. Therefore, LK and IC-LK can be interpreted as belonging to the category
of cascaded linear regression approaches for image alignment.
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It has been shown [9] that the IC form of LK is effectively equivalent to the original form;
the advantage of the IC form lies in its efficiency of computing the fixed steepest descent image
∂T (0)
∂p

in the least-squares objective. Specifically, it is evaluated on the static template image T
at the identity warp p = 0 and remains constant across iterations, and thus so is the resulting
linear regressor R. This gives an important theoretical proof of concept that a fixed predictor
of geometric updates can be successfully employed within an iterative image/object alignment
strategy, further reducing unnecessary model capacities.

3.2.2 Learning Alignment from Data

More generally, cascaded regression approaches for alignment can be learned from data given
that the distribution of warp displacements is known a priori. A notable example of this kind of
approach is the Supervised Descent Method (SDM) [199], which aims to learn the series of linear
geometric predictors {R,b} from data. The formulation of SDM’s learning objective is

min
R,b

N∑
n=1

M∑
j=1

‖δpn,j −R · In(pn ◦ δpn,j)− b‖2
2 , (3.7)

where δp is the geometric displacement drawn from a known generating distribution using Monte
Carlo sampling, and M is the number of synthetically created examples for each image. Here,
the image appearance I is often replaced with a predefined feature extraction function (e.g.
SIFT [115] or HOG [25]) of the image. This least-squares objective is typically solved with added
regularization (e.g. ridge regression) to ensure good matrix condition.

SDM is learned in a sequential manner, i.e. the training data for learning the next linear
model is drawn from the same generating distribution and applied through the previously learned
regressors. This has been a popular approach for its simplicity and effectiveness across various
alignment tasks, leading to a large number of variants [7, 100, 147] of similar frameworks. Like
the LK and IC-LK algorithms, SDM is another example of employing multiple low-capacity
models to establish the nonlinear relationship between appearance and geometry. We draw the
readers’ attention to [100] for a more formally established link between LK and SDM.

It is a widely agreed that computer vision problems can be solved much more efficiently if
misalignment among data is eliminated. Although SDM learns alignment from data and guarantees
optimal solutions after each applied linear model, it is not clear whether such alignment learned
in a greedy fashion is optimal for the subsequent tasks at hand, e.g. classification. In order to
optimize in terms of the final objective, it would be more favorable to paramterize the model as a
deep neural network and optimize the entire model using backpropagation.
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Figure 3.1: Network module of Spatial Transformers [71]. The blue arrows indicate information
passing of appearance, and the purple one indicate that of geometry. The yellow 3D trapezoid
denotes the geometric predictor, which contains the learnable parameters.

3.3 Spatial Transformer Networks

In the rapidly emerging field of deep learning among with the explosion of available collected
data, deep neural networks have enjoyed huge success in various vision problems. Nevertheless,
there had not been a principled way of resolving geometric variations in the given data. The
recently proposed Spatial Transformer Networks [71] performs spatial transformations on images
or feature maps with a (sub-)differentiable module. It has the effects of reducing geometric
variations inside the data and has brought great attention to the deep learning community.

In the feed-forward sense, a Spatial Transformer warps an image conditioned on the input.
This can be mathematically written as

Iout(0) = Iin(p), where p = f(Iin(0)) . (3.8)

Here, the nonlinear function f is parametrized as a learnable geometric predictor (termed the
localization network in the original paper), which predicts the warp parameters from the input
image. We note that the “grid generator” and the “sampler” from the original paper can be
combined to be a single warp function. We can see that for the special case where the geometric
predictor consists of a single linear layer, f would consists of a linear regressor R as well as a bias
term b, resulting the geometric predictor in an equivalent form of (3.6). This insight elegantly
links the STN and LK/SDM frameworks together.

Fig. 3.1 shows the basic architecture of STNs. STNs are of great interest in that trans-
formation predictions can be learned while also showing that grid sampling functions can be
(sub-)differentiable, allowing for backpropagation within an end-to-end learning framework.

Despite the similarities STNs have with classic alignment algorithms, there exist some funda-
mental drawbacks in comparison to LK/SDM. For one, it attempts to directly predict the optimal
geometric transformation with a single geometric predictor and does not take advantage of the
employment of multiple lower-capacity models to achieve more efficient alignment before classi-
fication. Although it has been demonstrated that multiple Spatial Transformers can be inserted
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(a)

(b) (c)

(d) (e)

Figure 3.2: Boundary effect of Spatial Transformers on real images. (a) Original image, where the
green box indicates the cropped region. (b) Cropped image as the input of the Spatial Transformer.
(c) Zoom-in transformation: sampling occurs within the range of the input image. (d)(e) Zoom-out
transformation: discarding the information outside the input image introduces a boundary effect
(STNs), while it is not the case with geometry preservation (c-STNs). The white dotted box
indicates the warp from the original image.

between feature maps, the effectiveness of such employment has on improving performance is not
well-understood. In addition, we can observe from (3.8) that no information of the geometric
warp p is preserved after the output image; this leads to a boundary effect when resampling
outside the input source image. A detailed treatment on this part is provided in Sec. 3.4.1.

In this work, we aim to improve upon STNs by theoretically connecting it to the LK algorithm.
We show that employing multiple low-capacity models as in LK/SDM for learning spatial trans-
formation within a deep network yields substantial improvement on the subsequent task at hand.
We further demonstrate the effectiveness of learning a single geometric predictor for recurrent
transformation and propose the Inverse Compositional Spatial Transformer Networks (IC-STNs),
which exhibit significant improvements over the original STN on various problems.

3.4 Inverse Compositional STNs

3.4.1 Geometry Preservation

One of the major drawbacks of the original Spatial Transformer architecture (Fig. 3.1) is that the
output image samples only from the cropped input image; pixel information outside the cropped
region is discarded, introducing a boundary effect. Fig. 3.2 illustrates the phenomenon.

We can see from Fig. 3.2(d) that such effect is visible for STNs in zoom-out transformations
where pixel information outside the bounding box is required. This is due to the fact that geometric
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Figure 3.3: A learnable warping module with geometry preserved, termed as c-STNs. The warp
parameters are passed through the network instead of the warped images.

Figure 3.4: Multiple concatenation of c-STNs for an iterative alignment framework.

information is not preserved after the spatial transformations. In the scenario of iterative alignment,
boundary effects are accumulated for each zoom-out transformations. Although this is less of an
issue with images with clean background, this is problematic with real images.

A series of spatial transformations, however, can be composed and described with exact
expressions. Fig. 3.3 illustrates an improved alignment module, which we refer to as compositional
STNs (c-STNs). Here, the geometric transformation is also predicted from a geometric predictor,
but the warp parameters p are kept track of, composed, and passed through the network instead
of the warped images. It is important to note that if one were to incorporate a cascade of multiple
Spatial Transformers, the geometric transformations are implicitly composed through multiple
resampling of the images. We advocate that these transformations are able to be and should
be explicitly defined and composed. Unlike the Spatial Transformer module in Fig. 3.1, the
geometry is preserved in p instead of being absorbed into the output image. Furthermore, c-STNs
allows repeated concatenation, illustrated in Fig. 3.4, where updates to the warp can be iteratively
predicted. This eliminates the boundary effect because pixel information outside the cropped
image is also preserved until the final transformation.

The derivative of warp compositions can also be mathematically expressed in closed forms.
Consider the input and output warp parameters pin and pout in Fig. 3.3. Taking the case of affine
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warps for example, the parameters p = [p1 p2 p3 p4 p5 p6]> are relatable to transformation
matrices in the homogeneous coordinates as

M(p) =

1 + p1 p2 p3

p4 1 + p5 p6

0 0 1

 . (3.9)

From the definition of warp composition, the warp parameters are related to the transformation
matrices through

M(pout) = M(∆p) ·M(pin). (3.10)

We can thus derive the derivative to be

∂pout

∂pin
= I +


∆p1 0 0 ∆p2 0 0

0 ∆p1 0 0 ∆p2 0
0 0 ∆p1 0 0 ∆p2

∆p4 0 0 ∆p5 0 0
0 ∆p4 0 0 ∆p5 0
0 0 ∆p4 0 0 ∆p5



∂pout

∂∆p
= I +


pin,1 pin,4 0 0 0 0
pin,2 pin,5 0 0 0 0
pin,3 pin,6 0 0 0 0

0 0 0 pin,1 pin,4 0
0 0 0 pin,2 pin,5 0
0 0 0 pin,3 pin,6 0

 , (3.11)

where I is the identity matrix. This allows gradients to backpropagate into the geometric predictor.

It is interesting to note that the expression of ∂pout
∂pin

in (3.11) has a very similar expression as
in Residual Networks [59, 60], where the gradients contains the identity matrix I and “residual
components”. This suggests that the warp parameters from c-STNs are generally insensitive to
the vanishing gradient phenomenon given the predicted warp parameters ∆p is small, and that it
is possible to repeat the warp/composition operation by a large number of times.

We also note that c-STNs are highly analogous to classic alignment algorithms. If each
geometric predictor consists of a single linear layer, i.e. the appearance-geometry relationship is
assumed to be linearly approximated, then it performs equivalent operations as the compositional
LK algorithm. It is also related to SDM, where heuristic features such as SIFT are extracted
before each regression layer. Therefore, c-STNs can be regarded as a generalization of LK and
SDM, differing that the features for predicting the warp updates can be learned from data and
incorporated into an end-to-end learning framework.

3.4.2 Recurrent Spatial Transformations

Of all variants of the LK algorithm, the IC form [9] has a very special property in that the
linear regressor remains constant across iterations. The steepest descent image ∂T (0)

∂p
in (3.5)
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Figure 3.5: Illustration of the proposed Inverse Compositional Spatial Transformer Network
(IC-STN). The same geometric predictor is learned to predict recurrent spatial transformations
that are composed together to warp the input image.

is independent of the input image and the current estimate of p; therefore, it is only needed to
be computed once. In terms of model capacity, IC-LK further reduces the necessary learnable
parameters compared to canonical LK, for the same regressor can be applied repeatedly and
converges provided a good initialization. The main difference from canonical LK and IC-LK lies
in that the warp update ∆p should be compositionally applied in the inverse form. We redirect
the readers to [9] for a full treatment of IC-LK, which is out of scope of this dissertation.

This inspires us to propose the Inverse Compositional Spatial Transformer Network (IC-STN).
Fig. 3.5 illustrates the recurrent module of IC-STN: the warp parameters p is iteratively updated
by ∆p, which is predicted from the current warped image with the same geometric predictors.
This allows one to recurrently predict spatial transformations on the input image. It is possible
due to the close spatial proximity of pixel intensities within natural images: there exists high
correlation between pixels in close distances.

In the IC-LK algorithm, the predicted warp parameters are inversely composed. Since the
IC-STN geometric predictor is optimized in an end-to-end learning framework, we can absorb
the inversion operation into the geometric predictor without explicitly defining it; in other words,
IC-STNs are able to directly predict the inverse parameters. In our experiments, we find that
there is negligible difference to explicitly perform an additional inverse operation on the predicted
forward parameters, and that implicitly predicting the inverse parameters fits more elegantly in an
end-to-end learning framework using backpropagation. We name our proposed method Inverse
Compositional nevertheless as IC-LK is where our inspirations are drawn from.

In practice, IC-STNs can be trained by unfolding the architecture in Fig. 3.5 multiple times into
the form of c-STNs (Fig. 3.4), sharing the learnable parameters across all geometric predictors,
and backpropagating the gradients as described in Sec. 3.4.1. This results in a single effective
geometric predictor that can be applied multiple times before performing the final warp operation
that suits subsequent tasks such as classification.
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(a) (b)

Figure 3.6: Visualization of the image and perturbed training samples for the planar image
alignment experiment. (a) Original image, where the red box indicates the ground-truth warp and
the yellow boxes indicate example generated warps. (b) Examples of the perturbed images (affine
warps with σ = 7.5 in this case).

Model σ = 2.5 σ = 5 σ = 7.5 σ = 10
c-STN-1 2.699 5.576 9.491 9.218

IC-STN-2 0.615 2.268 5.283 5.502
IC-STN-3 0.434 1.092 2.877 3.020
IC-STN-4 0.292 0.481 1.476 2.287
IC-STN-6 0.027 0.125 0.245 1.305

Table 3.1: Test error for the planar image alignment experiment under different extents of initial
perturbations. The number following the model names indicate the number of warp operations
unfolded from IC-STN during training.

3.5 Experiments

3.5.1 Planar Image Alignment

To start with, we explore the efficacy of IC-STN for planar alignment of a single image. We took
an example image from the Caffe library [75] and generated perturbed images with affine warps
around the hand-labeled ground truth, shown in Fig. 3.6. We used image samples of size 50× 50
pixels. The perturbed boxes are generated by adding i.i.d. Gaussian noise of standard deviation σ
(in pixels) to the four corners of the ground-truth box plus an additional translational noise from
the same Gaussian distribution, and finally fitting the box to the initial warp parameters p.

To demonstrate the effectiveness of iterative alignment under different amount of noise, we
consider IC-STNs that consist of a single linear layer with different numbers of learned recurrent
transformations. We optimize all networks in terms of L2 error between warp parameters with
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Figure 3.7: Evaluation on trained IC-STNs, where the dot on each curve corresponds to the
number of recurrent transformations unfolded during training.

stochastic gradient descent and a batch size of 100 perturbed training samples generated on the fly.

The test error is illustrated in Table 3.1. We see from c-STN-1 (which is equivalent to IC-
STN-1 with only one warp operation unfolded) that a single geometric warp predictor has limited
ability to directly predict the optimal geometric transformation. Reusing the geometric predictor
to incorporating multiple spatial transformations yields better alignment performance given the
same model capacity.

Fig. 3.7 shows the test error over the number of warp operations applied to the learned
alignment module. We can see that even when the recurrent spatial transformation is applied more
times than trained with, the error continues to decrease until some of point of saturation, which
typically does not hold true for classical recurrent neural networks. This implies that IC-STN is
able to capture the correlation between appearance and geometry to perform gradient descent on a
learned cost surface for successful alignment.

3.5.2 MNIST Classification

In this section, we demonstrate how IC-STNs can be utilized in joint alignment/classfication
tasks. We choose the MNIST handwritten digit dataset [94], and we use a homography warp
noise model to perturb the four corners of the image and translate them with Gaussian noise, both
with a standard deviation of 3.5 pixels. We train all networks for 200K iterations with a batch
size of 100 perturbed samples generated on the fly. We choose a constant learning rate of 0.01 for
the classification subnetworks and 0.0001 for the geometric predictors as we find the geometric
predictor sensitive to large changes. We evaluate the classification accuracy on the test set using
the same warp noise model.
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Model Error #Param. Architecture
CNN(a) 6.597 % 39079 conv(3,3)-conv(36)-P-conv(3,9)-conv(3,12)-fc(48)-fc(10)
STN(a) 4.944 % 39048 [conv(7,4)-conv(7,8)-P-fc(48)-fc(8)]×1→ conv(9,3)-fc(10)

c-STN-1(a) 3.687 % 39048 [conv(7,4)-conv(7,8)-P-fc(48)-fc(8)]×1→ conv(9,3)-fc(10)
c-STN-2(a) 2.060 % 38528 [conv(9,4)-fc(8)]×2→ conv(9×9, 3)-fc(10)
c-STN-4(a) 1.476 % 37376 [fc(8)]×4→ conv(9,3)-fc(10)

IC-STN-2(a) 1.905 % 39048 [conv(7,4)-conv(7,8)-P-fc(48)-fc(8)]×2→ conv(9,3)-fc(10)
IC-STN-4(a) 1.230 % 39048 [conv(7,4)-conv(7,8)-P-fc(48)-fc(8)]×4→ conv(9,3)-fc(10)

CNN(b) 19.065 % 19610 conv(9,2)-conv(9,4)-fc(32)-fc(10)
STN(b) 9.325 % 18536 [fc(8)]×1→ conv(9,3)-fc(10)

c-STN-1(b) 8.545 % 18536 [fc(8)]×1→ conv(9,3)-fc(10)
IC-STN-2(b) 3.717 % 18536 [fc(8)]×2→ conv(9,3)-fc(10)
IC-STN-4(b) 1.703 % 18536 [fc(8)]×4→ conv(9,3)-fc(10)

Table 3.2: Classification error on the perturbed MNIST test set. The non-recurrent networks have
similar numbers of layers and learnable parameters but different numbers of warp operations
(bold-faced). The filter dimensions are shown in parentheses as (kernel size, output channels),
where those of the geometric predictor(s) are in green and those of the subsequent classification
network are in blue (P denotes a 2×2 max-pooling operation). Best viewed in color.

STN

init.

(1)

(2)

(3)

final

Figure 3.8: Sample alignment results of IC-STN-4(a) on the MNIST test set with homography
warp perturbations. The first row of each column shows the initial perturbation; the middle three
rows illustrates the alignment process (iterations 1 to 3); the second last row shows the final
alignment before feeding into the classification network. The last row shows the alignment from
the original STN: the cropped digits are the results of the boundary effect.

We compare IC-STN to several network architectures, including a baseline CNN with no
spatial transformations, the original STN from Jaderberg et al., and c-STNs. All networks
with spatial transformations employ the same classification network. The results as well as the
architectural details are listed in Table 3.2. We can see that classical CNNs do not handle large
spatial variations efficiently with data augmentation. In the case where the digits may be occluded,
however, trading off capacity for a single deep predictor of geometric transformation also results
in poor performance. Incorporating multiple transformers lead to a significant improvement in
classification accuracy; further comparing c-STN-4(a) and IC-STN-4(b), IC-STNs are able to
trade little accuracy off for a large reduction of capacity compared to its non-recurrent counterpart.

Fig. 3.8 shows how IC-STNs learns alignment for classification. In many cases where the
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Figure 3.9: Mean/variance of the aligned appearances from the 10 classes of the test set (homog-
raphy perturbations).

handwritten digits are occluded, IC-STN is able to automatically warp the image and reveal
the occluded information from the original image. There also exists smooth transitions during
the alignment, which confirms with the recurrent spatial transformation concept IC-STN learns.
Furthermore, we see that the outcome of the original STN becomes cropped digits due to the
boundary effect described in Sec. 3.4.1.

We visualize the overall final alignment performance by taking the mean and variance on
the test set appearance before classification, shown in Fig. 3.9. The mean/variance results of
the original STN becomes a down-scaled version of the original digits, reducing information
necessary for better classification. From c-STN-1, a single geometric predictor is poor in directly
predicting geometric transformations. The variance among all aligned samples is dramatically
decreased when more warp operations are introduced in IC-STN. This suggests that elimination
of spatial variations within data is crucial to boosting the performance of downstream tasks.
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Model Error #Param. Architecture
CNN 8.287 % 200207 conv(7,6)-conv(7,12)-P-conv(7,24)-fc(200)-fc(43)
STN 6.495 % 197343 [conv(7,6)-conv(7,24)-fc(8)]×1→ conv(7,6)-conv(7,12)-P-fc(43)

c-STN-1 5.011 % 197343 [conv(7,6)-conv(7,24)-fc(8)]×1→ conv(7,6)-conv(7,12)-P-fc(43)
IC-STN-2 4.122 % 197343 [conv(7,6)-conv(7,24)-fc(8)]×2→ conv(7,6)-conv(7,12)-P-fc(43)
IC-STN-4 3.184 % 197343 [conv(7,6)-conv(7,24)-fc(8)]×4→ conv(7,6)-conv(7,12)-P-fc(43)

Table 3.3: Classification error on the perturbed GTSRB test set. The architectural descriptions
follow that in Table 3.2.

STN

IC-STN-4

initial

Figure 3.10: Sample alignment results of IC-STN-4 on the GTSRB test set in comparison to the
original STN.

3.5.3 Traffic Sign Classification

Here, we show how IC-STNs can be applied to real-world classification problems such as traffic
sign recognition. We evaluate our proposed method with the German Traffic Sign Recognition
Benchmark [168], which consists of 39,209 training and 12,630 test images from 43 classes taken
under various conditions. We consider this as a challenging task since many of the images are
taken with motion blurs and/or of resolution as low as 15×15 pixels. We rescale all images and
generate perturbed samples of size 36×36 pixels with the same homography warp noise model
described in Sec. 3.5.2. The learning rate is set to be 0.001 for the classification subnetworks and
0.00001 for the geometric predictors.

We set the controlled model capacities to around 200K learnable parameters and perform
similar comparisons to the MNIST experiment. Table 3.3 shows the classification error on
the perturbed GTSRB test set. Once again, we see a considerable amount of classification
improvement of IC-STN from learning to reuse the same geometric predictor.

Fig. 3.10 compares the aligned images from IC-STN and the original STN before the clas-
sification networks. Again, IC-STNs are able to recover occluded appearances from the input
image. Although STN still attempts to center the perturbed images, the missing information from
occlusion degrades its subsequent classification performance.

We also visualize the aligned mean appearances from each network in Fig. 3.11, and it can be
observed that the mean appearance of IC-STN becomes sharper as the number of warp operations
increase, once again indicating that good alignment is crucial to the subsequent target tasks. It is
also interesting to note that not all traffic signs are aligned to be fit exactly inside the bounding
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Figure 3.11: Mean aligned appearances for classification on the GTSRB test set.

boxes, e.g. the networks finds the optimal alignment for stop signs to be zoomed-in images while
excluding the background information outside the octagonal shapes. This suggests that in certain
cases, only the pixel information inside the sign shapes are necessary to achieve good alignment
for classification.

3.6 Conclusion

In this chapter, we theoretically connect the core idea of the Lucas-Kanade algorithm with
Spatial Transformer Networks. We show that geometric variations within data can be eliminated
more efficiently through multiple spatial transformations within an alignment framework. We
propose Inverse Compositional Spatial Transformer Networks for predicting recurrent spatial
transformations and demonstrate superior alignment and classification results compared to baseline
CNNs and the original STN.
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Chapter 4

Discovering Realism in Geometric
Alignment

4.1 Introduction

Generative image modeling has progressed remarkably with the advent of convolutional neural
networks (CNNs). Most approaches constrain the possible appearance variations within an image
by learning a low-dimensional embedding as an encoding of the natural image subspace and
making predictions from this at the pixel level. We refer to these approaches here as direct image
generation. Generative Adversarial Networks (GANs) [48], in particular, have demonstrated to be
an especially powerful tool for realistic image generation. They consist of a generator network (G)
that produces images from codes, and a discriminator network (D) that distinguishes real images
from fake ones. These two networks play a minimax game that results in G generating realistic
looking images and D being unable to distinguish between the two when equilibrium is reached.

Direct image generation, however, has its limitations. As the space of images is high-
dimensional and image generation methods are limited by finite network capacity, direct image
generation methods work better only on restricted domains (e.g. faces) or at low resolutions.

In this chapter, we leverage Spatial Transformer Networks (STNs) [71], a special type of
CNNs capable of performing geometric transformations on images, to provide a simpler way to
generate realistic looking images — by restricting the space of possible outputs to a well-defined
low-dimensional geometric transformation of real images. We propose Spatial Transformer
Generative Adversarial Networks (ST-GANs), which learn Spatial Transformer generators within
a GAN framework. The adversarial loss enables us to learn geometric corrections resulting in
a warped image that lies at the intersection of the natural image manifold and the geometric
manifold – the space of geometric manipulations specific to the target image (Fig. 4.1). To achieve
this, we advocate a sequential adversarial training strategy to learn iterative spatial transformations
that serve to break large transformations down into smaller ones.

We evaluate ST-GANs in the context image compositing, where a source foreground image
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Figure 4.1: Composite images easily fall outside the natural image manifold due to appearance
and geometric discrepancies. We seek to learn geometric corrections that sequentially warp
composite images towards the intersection of the geometric and natural image manifolds.

and its mask are warped by the Spatial Transformer generator G, and the resulting composite is
assessed by the discriminator D. In this setup, D tries to distinguish warped composites from
real images, while G tries to fool D by generating as realistic looking as possible composites.
To our knowledge, we are the first to address the problem of realistic image generation through
geometric transformations in a GAN framework. We demonstrate this method on the application
of compositing furniture into indoor scenes, which gives a preview of, for example, how purchased
items would look in a house. To evaluate in this domain, we created a synthetic dataset of indoor
scene images as the background with masked objects as the foreground. We also demonstrate
ST-GANs in a fully unpaired setting for the task of compositing glasses on portrait images. A
large-scale user study shows that our approach improves the realism of image composites.

Our main contributions are as follows:

• We integrate the STN and GAN frameworks and introduce ST-GAN, a novel GAN frame-
work for finding realistic-looking geometric warps.

• We design a multi-stage architecture and training strategy that improves warping conver-
gence of ST-GANs.

• We demonstrate compelling results in image compositing tasks in both paired and unpaired
settings as well as its applicability to high-resolution images.
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4.2 Related Work

Image compositing. Image compositing refers to the process of overlaying a masked foreground
image on top of a background image. One of the main challenges of image compositing is that the
foreground object usually comes from a different scene than the background, and therefore it is
not likely to match the background scene in a number of ways that negatively effects the realism
of the composite. These can be both appearance differences (lighting, white balance, and shading
differences) and geometric differences (changes in camera viewpoint and object positioning).

Existing photo-editing software features various image appearance adjustment operations for
that allows users to create realistic composites. Prior work has attempted to automate appearance
corrections (e.g. contrast, saturation) through Poisson blending [140] or more recent deep learning
approaches [175, 219]. In this chapter, we focus on the second challenge: correcting for geometric
inconsistencies between source and target images.

Spatial Transformer Networks (STNs) [71]. STNs are one way to incorporate learnable image
warping within a deep learning framework. A Spatial Transformer module consists of a subnetwork
predicting a set of warp parameters followed by a (differentiable) warp function.

STNs have been shown effective in resolving geometric variations for discriminative tasks as
well as a wide range of extended applications such as robust filter learning [24, 74], image/view
synthesis [45, 136, 207, 216], and 3D representation learning [77, 203, 217]. More recently,
Inverse Compositional STNs (IC-STNs) [99] advocated an iterative alignment framework. We
borrow the concept of iterative warping but do not enforce recurrence in geometric prediction;
instead, we add different generators at each warping step with a sequential training scheme.

Generative Adversarial Networks (GANs) [48]. GANs are a class of generative models that
are learned by playing a minimax optimization game between a generator network G and a
discriminator network D. Through this adversarial process, GANs are shown capable of learning
a generative distribution that matches the empirical distribution of a given data collection. One
advantage of GANs is that the loss function is essentially learned by the discriminator network,
allowing for training in cases where ground-truth data with strong supervision is unavailable.

GANs are utilized for data generation in various domains, including images [142], videos [181],
and 3D voxelized data [193]. For images in particular, it has been shown to generate compelling
results in a vast variety of conditional image generation problems such as super-resolution [92], in-
painting [139], image-to-image translation [70, 107, 221], and image editing/manipulation [220].

Recently, STNs were also sought to be adversarially trained for object detection [189], where
adversarial examples with feature deformations are generated to robustify object detectors. LR-
GAN [205] approached direct image generation problems with additional STNs onto the (directly)
generated images to factorize shape variations. We explore the context of STNs with GANs in the
space of conditional image generation from given inputs, which is a more direct integration of the
two frameworks.
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Figure 4.2: Background. (a) Given an initial composite transformation p0, the foreground image
and mask is composited onto the background image using (4.1). (b) Using Spatial Transformer
Networks (STNs), a geometric prediction network G1 predicts an update ∆p1 conditioned on
the foreground and background images, resulting in the new parameters p1. The update is
performed with warp composition (4.3). (c) Our final form is an iterative STN to predict a series
of accumulative warp updates on the foreground such that the resulting composite image falls
closer to the natural image manifold.

4.3 Approach

Our goal is realistic geometric correction for image compositing given a background image
Ibg and foreground object Ifg with a corresponding mask Mfg. We aim to correct the camera
perspective, position and orientation of the foreground object such that the resulting composite
looks natural. The compositing process can be expressed as:

Icomp = Ifg �Mfg + Ibg � (1−Mfg)

= Ifg ⊕ Ibg . (4.1)

For simplicity, we further introduce the notation ⊕ to represent compositing (with Mfg implied
within Ifg). Given the composite parameters p0 (defining an initial warp state) of Ifg, we can
rewrite (4.1) as

Icomp(p0) = Ifg(p0)⊕ Ibg , (4.2)

where images are written as functions of the warp parameters. This operator is shown in Fig. 4.2(a).

Here, we restrict our geometric warp function to homography transformations, which can
represent approximate 3D geometric rectifications for objects that are mostly planar or with small
perturbations. As a result, we are making an assumption that the perspective of the foreground
object is close to the correct perspective; this is often the case when people are choosing similar,
but not identical, images from which to composite the foreground object.

The core module of our network design is an STN (Fig. 4.2(b)), where the geometric prediction
network G predicts a correcting update ∆p1. We condition G on both the background and
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foreground images, since knowing how an object should be transformed to fit a background scene
requires knowledge of the complex interaction between the two. This includes geometry of the
object and the background scene, the relative camera position, and semantic understanding of
realistic object layouts (e.g. having a window in the middle of the room would not make sense).

4.3.1 Iterative Geometric Corrections

Predicting large displacement warp parameters from image pixels is extremely challenging, so
most prior work on image alignment predict local geometric transformations in an iterative
fashion [9, 65, 100, 116, 199]. Similarly, we propose to use iterative STNs to predict a series of
warp updates, shown in Fig. 4.2(c). At the ith iteration, given the input image I and the previous
warp state pi−1, the correcting warp update ∆pi and the new warp state pi can be written as

∆pi = Gi
(
Ifg(pi−1), Ibg

)
pi = pi−1 ◦∆pi , (4.3)

where Gi(·) is the geometric prediction network and ◦ denotes composition of warp parameters.
This family of iterative STNs preserves the original images from loss of information due to
multiple warping operations [99].

4.3.2 Sequential Adversarial Training

In order for STNs to learn geometric warps that map images closer to the natural image manifold,
we integrate them into a GAN framework, which we refer to as ST-GANs. The motivation for this
is two-fold. First, learning a realistic geometric correction is a multi-modal problem (e.g. a bed
can reasonably exist in multiple places in a room); second, supervision for these warp parameters
are typically not available. The main difference of ST-GANs from conventional GANs is that
(1) G generates a set of low-dimensional warp parameter updates instead of images (the whole
set of pixel values); and (2) D gets as input the warped foreground image composited with the
background.

To learn gradual geometric improvements toward the natural image manifold, we adopt
a sequential adversarial training strategy for iterative STNs (Fig. 4.3), where the geometric
predictor G corresponds to the stack of generators Gi. We start by training a single G1, and each
subsequent new generator Gi is added and trained by fixing the weights of all previous generators
{Gj}j=1···i−1. As a result, we train only Gi and D by feeding the resulting composite image at
warp state Icomp(pi) into the discriminator D and matching it against the real data distribution.
This learning philosophy shares commonalities with the Supervised Descent Method [199], where
a series of linear regressors are solved greedily, and we found it makes the overall training faster
and more robust. Finally, we fine-tune the entire network end-to-end to achieve our final result.
Note that we use the same discriminator D for all stages of the generator Gi, as the fundamental
measure of “geometric fakeness” does not change over iterations.
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Figure 4.3: Sequential adversarial training of ST-GAN. When learning a new warp state pi,
only the new generator Gi is updated while the previous ones are kept fixed. A single discriminator
(learned from all stages) is continuously improved during the sequential learning process.

4.3.3 Adversarial Objective

We optimize the Wasserstein GAN (WGAN) [6] objective for our adversarial game. We note
that ST-GAN is amenable to any other GAN variants [10, 118, 215], and that the choice of GAN
architecture is orthogonal to this work.

The WGAN minimax objective at the ith stage is

min
Gi

max
D∈D

E
x∼Pfake

pi∼Ppi|pi−1

[
D
(
x(pi)

)]
− E

y∼Preal

[
D(y)

]
, (4.4)

where y = Ireal and x = Icomp are drawn from the real data and fake composite distributions, and
D is the set of 1-Lipschitz functions enforced by adding a gradient penalty term Lgrad [53]. Here,
pi (where Gi is implied, defined in (4.3)) is drawn from the posterior distribution conditioned
on pi−1 (recursively implied). When i = 1, the initial warp p0 is drawn from Ppert, a predefined
distribution for geometric data augmentation.

We also constrain the warp update ∆pi to lie within a trust region by introducing an additional
penalty Lupdate = ‖∆pi‖2

2. This is essential since ST-GAN may learn trivial solutions to remove
the foreground (e.g. by translating it outside the image or shrinking it into nothing), leaving
behind only the background image and in turn making the composite image realistic already.
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When training ST-GAN sequentially, we update D and Gi alternating the respective loss
functions:

LD = Ex,pi

[
D
(
x(pi)

)]
− Ey

[
D(y)

]
+ λgrad · Lgrad (4.5)

LGi = −Ex,pi

[
D
(
x(pi)

)]
+ λupdate · Lupdate , (4.6)

where λgrad and λupdate are the penalty weights for the D gradient and the warp update ∆pi
respectively, and Gi and ∆pi are again implied through (4.3). When fine-tuning ST-GAN with
N learned updates end-to-end, the generator objective is the sum of that from each Gi, i.e.
LG =

∑N
i=1 LGi .

4.4 Experiments

We begin by describing the basic experimental settings.

Warp parameterizations. We parameterize a homography with the sl(3) Lie algebra [122], i.e.
the warp parameters p ∈ sl(3) and homography matrices H ∈ SL(3) are related through the
exponential map. Under this parameterization, warp composition can be expressed as the addition
of parameters, i.e. pa ◦ pb ≡ pa + pb ∀pa,pb ∈ sl(3).

Model architecture. We denote the following: C(k) is a 2D convolutional layer with k filters
of size 4× 4 and stride 2 (halving the feature map resolution) and L(k) is a fully-connected layer
with k output nodes. The input of the generators Gi has 7 channels: RGBA for foreground and
RGB for background, and the input to the discriminator D is the composite image with 3 channels
(RGB). All images are rescaled to 120 × 160, but we note that the parameterized warp can be
applied to full-resolution images at test time.

The architecture of G is C(32)-C(64)-C(128)-C(256)-C(512)-L(256)-L(8), where the output
is the 8-dimensional (in the case of a homography) warp parameter update ∆p. For each
convolutional layer in G, we concatenate a downsampled version of the original image (using
average pooling) with the input feature map. For D, we use a PatchGAN architecture [70], with
layout C(32)-C(64)-C(128)-C(256)-C(512)-C(1). Nonlinearity activations are inserted between
all layers, where they are ReLU for G and LeakyReLU with slope 0.2 for D. We omit all
normalization layers as we found them to deteriorate training performance.

4.4.1 3D Cubes

To begin with, we validate whether ST-GANs can make geometric corrections in a simple, artificial
setting. We create a synthetic dataset consisting of a 3D rectangular room, an axis-aligned cube
inside the room, and a perspective camera (Fig. 4.4(a)). We apply random 3-DoF translations to
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Figure 4.4: (a) We create a synthetic dataset of 3D cube renderings and validate the efficacy of
ST-GAN by attempting to correct randomly generated geometric perturbations. (b) ST-GAN
is able to correct the cubes to a right perspective, albeit a possible translational offset from the
ground truth.

the cube and 6-DoF perturbations to the camera, and render the cube/room pair separately as the
foreground/background (of resolution 120× 160). We color the cube and the room randomly.

We perturb the rendered foreground cubes with random homography transformations as the
initial warp p0 and train ST-GAN by pairing the original cube as the ground-truth counterpart for
D. As shown in Fig. 4.4(b), ST-GAN is able to correct the perturbed cubes scale and perspective
distortion with respect to the underlying scene geometry. In addition, ST-GAN is sometimes able
to discover other realistic solutions (e.g. not necessarily aligning back to the ground-truth location),
indicating ST-GAN’s ability to learn the multi-modal distribution of correct cube placements.

4.4.2 Indoor Objects

Next, we show how ST-GANs can be applied to practical image compositing domains. We
choose the application of compositing furniture in indoor scenes and demonstrate its efficacy
on both simulated and real-world images. To collect training data, we create a synthetic dataset
consisting of rendered background scenes and foreground objects with masks. We evaluate on the
synthetic test set as well as high-resolution real world photographs to validate whether ST-GAN
also generalizes to real images.
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Category Training set Test set
# 3D inst. # pert. # 3D inst. # pert.

Bed 3924 11829 414 1281
Bookshelf 508 1280 58 137

Cabinet 9335 31174 1067 3518
Chair 196 609 22 60
Desk 64 1674 73 214

Dresser 285 808 31 84
Refrigerator 3802 15407 415 1692

Sofa 3604 11165 397 1144

Total 22303 73946 2477 8130

Table 4.1: Dataset statistics for the indoor object experiment, reporting the number of object
instances chosen for perturbation, and the final number of rendered perturbed samples.

remove
occlusion

remove
object

perturb camera & remove occlusion

crop object &
composite

Figure 4.5: Rendering pipeline. Given an indoor scene and a candidate object, we remove
occluding objects to create an occlusion-free scenario, which we do the same at another perturbed
camera pose. We remove the object to create a training sample pair with mismatched perspectives.

Data preparation. We render synthetic indoor scene images from the SUNCG dataset [165],
consisting of 45,622 indoor scenes with over 5M 3D object instances from 37 categories [157].
We use the selected 41,499 scene models and the 568,749 camera viewpoints from Zhang et
al. [214] and utilize Mitsuba [72] to render photo-realistic images with global illumination. We
keep a list of candidate 3D objects consisting of all instances visible from the camera viewpoints
and belonging to the categories listed in Table 4.1.

The rendering pipeline is shown in Fig. 4.5. During the process, we randomly sample an
object from the candidate list, with an associated camera viewpoint. To emulate an occlusion-free
compositing scenario, occlusions are automatically removed by detecting overlapping object
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Category Initial
SDM [199]

Homogra- ST-GAN ST-GAN ST-GAN ST-GAN ST-GAN Ground
warp phyNet [32] (non-seq.) (warp 1) (warp 2) (warp 4) (end-to-end) truth

Bed 35.5 % 30.5 % 30.2 % 32.8 % 32.8 % 46.8 % 32.8 % 32.2 % 75.0 %
Bookshelf 21.1 % 33.9 % 35.1 % 16.7 % 26.4 % 26.2 % 39.5 % 42.6 % 68.9 %

Cabinet 20.9 % 19.8 % 35.0 % 36.6 % 14.3 % 31.2 % 44.4 % 50.0 % 74.3 %
Chair 32.8 % 36.8 % 47.6 % 50.9 % 62.3% 42.7 % 50.0 % 58.6 % 68.7 %
Desk 18.9 % 13.1 % 36.1 % 35.4 % 29.2 % 29.0 % 39.4 % 40.7 % 65.1 %

Dresser 14.9 % 18.6 % 20.7 % 16.7 % 24.6 % 27.4 % 29.7 % 48.4 % 66.1 %
Refrigerator 37.1 % 21.4 % 50.0 % 37.7 % 28.6 % 47.1 % 39.7 % 51.7 % 81.6 %

Sofa 15.9 % 31.0 % 42.4 % 28.9 % 37.0 % 54.9 % 56.1 % 51.8 % 78.2 %

Average 24.6 % 25.6 % 37.1 % 31.9 % 31.9 % 38.2 % 41.5 % 47.0 % 72.6 %

Table 4.2: AMT user studies for the indoor objects experiment. Percentages represent the how
often the images in each category were classified as “real” by Turkers. Our final model, ST-GAN
(end-to-end), substantially improves over geometric realism when averaged across all classes. Our
realism performance improves with the number of warps trained as well as after the end-to-end
fine-tuning. The ground truth numbers serve as a theoretical upper bound for all methods.

masks. We render one image with the candidate object present (as the “real” sample) and one with
it removed (as the background image). In addition, we perturb the 6-DoF camera pose and render
the object with its mask (as the foreground image) for compositing. We thus obtain a rendered
object as viewed from a different camera perspective; this simulates the image compositing
task where the foreground and background perspectives mismatch. We note that a homography
correction can only approximate these 3D perturbations, so there is no planar ground-truth warp
to use for supervision. We report the statistics of our rendered dataset in Table 4.1. All images are
rendered at 120× 160 resolution.

Settings. Similar to the prior work by Lin & Lucey [99], we train ST-GAN forN = 4 sequential
warps During adversarial training, we rescale the foreground object randomly from Unif(0.9, 1.1)
and augment the initial warp p0 with a translation sampled from N (0, 0.05) scaled by the image
dimensions. We set λupdate = 0.3 for all methods.

Baselines. One major advantage of ST-GAN is that it can learn from “realism” comparisons
without ground-truth warp parameters for supervision. However, prior approaches require super-
vision directly on the warp parameters. Therefore, we compare against self-supervised approaches
trained with random homography perturbations on foreground objects as input, yielding warp
parameters as self-supervision. We reemphasize that such direct supervision is insufficient in this
application as we aim to find the closest point on a manifold of realistic looking composites rather
than fitting a specific paired model. Our baselines are (1) HomographyNet [32], a CNN-based
approach that learns direct regression on the warp parameters, and (2) Supervised Descent Method
(SDM) [199], which greedily learns the parameters through cascaded linear regression. We train
the SDM baseline for 4 sequential warps as well.
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Figure 4.6: Qualitative evaluation on the indoor rendering test set. Compared to the baselines
trained with direct homography supervision, ST-GAN creates more realistic composites. We find
that ST-GAN is able to learn common object-room relationships in the dataset, such as beds being
against walls. Note that ST-GANs corrects the perspectives but not necessarily scale, as objects
often exist at multiple scales in the real data. We observe that ST-GAN occasionally performs
worse for unusual objects (e.g. with peculiar colors, last column).

Quantitative evaluation. As with most image generation tasks where the goal is realism, there
is no natural quantitative evaluation possible. Therefore, we carry out a perceptual study on
Amazon Mechanical Turk (AMT) to assess geometric realism of the warped composites. We
randomly chose 50 test images from each category and gather data from 225 participants. Each
participant was shown a composite image from a randomly selected algorithm (Table 4.2), and
was asked whether they saw any objects whose shape does not look natural in the presented image.

We report the AMT assessment results in Table 4.2. On average, ST-GAN shows a large
improvement of geometric realism, and quality improves over the sequential warps. When
considering that the warp is restricted to homography transformations, these results are promising,
as we are not correcting for more complicated view synthesis effects for out-of-plane rotations
such as occlusions. Additionally, ST-GAN, which does not require ground truth warp parameters
during training, greatly outperforms other baselines, while SDM yields no improvement and
HomographyNet increases realism, but to a lesser degree.

Ablation studies. We found that learning iterative warps is advantageous: compared with a
non-iterative version with the same training iterations (non-seq. in Table 4.2), ST-GAN (with
multiple generators) approaches geometric realism more effectively with iterative warp updates. In
addition, we trained an iterative HomographyNet [32] using the same sequential training strategy
as ST-GAN but found little visual improvement over the non-iterative version; we thus focus our
comparison against the original [32].
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Figure 4.7: Visualization of iterative updates in ST-GAN, where objects make gradual improve-
ments that reaches closer to realism in an incremental fashion.
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Figure 4.8: Dragging and snapping. (a) When an object is dragged across the scene, the
perspective changes with the composite location to match the camera. (b) ST-GAN “snaps”
objects to where it would likely be composited (e.g. a bookshelf is usually laid against the wall).

Qualitative evaluation. We present qualitative results in Fig. 4.6. ST-GAN visually outperforms
both baselines trained with direct homography parameter supervision, which is also reflected in
the AMT assessment results. Fig. 4.7 shows how ST-GAN updates the homography warp with
each of its generators; we see that it learns gradual updates that makes a realism improvement
at each step. In addition, we illustrates in Fig. 4.8 the effects ST-GAN learns, including gradual
changes of the object perspective at different composite locations inside the room, as well as a
“snapping” effect that predicts a most likely composite location given a neighborhood of initial
locations. These features are automatically learned from the data, and they can be useful when
implemented in interactive settings.

Finally, to test whether ST-GAN extends to real images, we provide a qualitative evaluation
on photographic, high-resolution test images gathered from the Internet and manually masked
(Fig 4.9). This is feasible since the warp parameters predicted from the low-resolution network
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Figure 4.9: Real world high-resolution test results. Here we show our method applied to real
images. The inputs are scaled down and fed to the network and then the warp parameters are
applied at full resolution.

input are transferable to high-resolution images. As a consequence, ST-GAN is indirectly applica-
ble to various image resolutions and not strictly limited as with conventional GAN frameworks.
Our results demonstrates the utilization of ST-GAN for high-quality image generation and editing.

4.4.3 Glasses

Finally, we demonstrate results in an entirely unpaired setting where we learn warping corrections
for compositing glasses on human faces. The lack of paired data means that we do not necessarily
have pictures of the same people both with and without glasses (ground truth).

Data preparation. We use the CelebA dataset [111] and follow the provided training/test split.
We then use the “eyeglasses” annotation to separate the training set into two groups. The first
group of people with glasses serve as the real data to be matched against in our adversarial settings,
and the group of people without glasses serves as the background. This results in 152249 training
and 18673 test images without glasses, and 10521 training images with glasses. We hand-crafted
10 pairs of frontal-facing glasses as the foreground source (Fig. 4.10). We note that there are no
annotations about where or how the faces are placed, and we do not have any information where
the different parts of the glasses are in the foreground images.
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Figure 4.10: The split of CelebA for the background and the real images, as well as the crafted
glasses as the foreground.

In this experiment, we train ST-GAN with N = 5 sequential warps. We crop the aligned
faces into 144× 144 images and resize the glasses to widths of 120 pixels initialized at the center.
During training, we add geometric data augmentation by randomly perturbing the faces with
random similarity transformations and the glasses with random homographies.

Results. The results are shown in Fig. 4.11. As with the previous experiments, ST-GAN learns
to warp the foreground glasses in a gradual fashion that improves upon realism at each step. Our
method can correctly align glasses onto the people’s faces, even with a certain amount of in-plane
rotations. However, ST-GAN does a poorer job on faces with too much out-of-plane rotation.

While such an effect is possible to achieve by taking advantage of facial landmarks, our results
are encouraging as no information was given about the structure of either domain, and we only
had access to unpaired images of people with and without glasses. Nonetheless, ST-GAN was
able to learn a realism manifold that drove the Spatial Transformer generators. We believe this
demonstrates great potential to extend ST-GANs to other image alignment tasks where acquiring
paired data is very challenging.

4.5 Conclusion

We have introduced ST-GANs as a class of methods to model geometric realism. We have
demonstrated the potential of ST-GANs on the task of image compositing, showing improved
realism in a large-scale rendered dataset, and results on fully unpaired real-world image data. It
is our hope that this work will open up new revenues to the research community to continue to
explore in this direction.

Despite the encouraging results ST-GAN achieves, there are still some limitations. We find
that ST-GAN suffers more when presented imbalanced data, particularly rare examples (e.g. white,
thick-framed glasses in the glasses experiment). In addition, we also find convergence of ST-GAN
to fail with more extreme translation or in-plane rotation of objects. We believe a future analysis
of the convergence properties of classical image alignment methods with GAN frameworks is
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worthy of investigation in improving the robustness of ST-GANs.

4.A Appendix

4.A.1 Indoor Object Experiment: Rendering Details

We describe additional details regarding the rendering of the SUNCG dataset [165] for our experi-
ment. In addition to Mitsuba [72] for rendering photo-realistic textures, we also utilize the OpenGL
toolbox provided by Song et al. [165], which supports rendering of instance segmentation.

Candidate object selection. For each of the provided camera viewpoints from Zhang et
al. [214], we render an instance segmentation of all objects visible in the camera viewpoint.
For each of these objects, we also separately render a binary object mask by removing all other
existing objects (including the floor/ceiling/walls).

We use these information to exclude objects that are not ideal for our compositing experiment,
including those that are too tiny or only partially visible in the camera view. Therefore, we include
objects into the candidate selection list that match the criteria:

• The entire object mask is visible within the camera.
• The object mask occupies at least 10% of all pixels.
• At least 50% of the object mask is visible within the instance segmentation mask.
• The object belongs to one of the NYUv2 [157] categories of refrigerators, desks, book-

shelves, cabinets, beds, dressers, sofas, or chairs.

Occlusion removal. For all the objects in the candidate list, we remove the occluding objects
(from the associated camera viewpoint) by overlapping the object mask onto the instance segmen-
tation mask. All overlapped pixels with different instance labels are detected to be associated
with an occluding object. Since there may be “hidden” occlusions that are occluded in the first
place, we repeat the same process after the initial detected occlusions are removed to reveal
the remaining occlusions. This is repeated until no more occluding objects with respect to the
candidate object is present.

In order to create a cleaner space for compositing objects, we also use a “thicker” object mask
for the above removal procedure. To achieve this, we dilate the object mask with a 3× 3 all-ones
kernel for 10 times (i.e. “thicken” the object mask by 10 pixels).

Camera perturbation. For each of the provided camera viewpoints, we generate a camera per-
turbation by adding a random 3D-translation sampled from Unif(−1, 1) in the forward-backward
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direction, one sampled from Unif(−1, 1) in the left-right direction (both scaled in meters as
defined in the dataset), and a random azimuth rotation sampled from Unif(−30, 30) (degrees).

After generating a camera perturbation, the same occlusion removal process described above
is performed to ensure the wholeness of the object from the perturbed perspective. The candidate
object rendered from the perturbed view serves as the foreground source for our experiment.
However, if it becomes only partially or not visible, then the rendering is discarded.

Rendering. We use Mitsuba to render 120× 160 realistic textures and the OpenGL toolbox to
render object masks at 240× 320 followed by ×2 downscaling for anti-aliasing.

4.A.2 Warp Parameterization Details

We follow Mei et al. [122] to parameterize homography with the sl(3) Lie algebra. Given a warp
parameter vector p = [p1, p2, p3, p4, p5, p6, p7, p8]> ∈ sl(3), the transformation matrix H ∈ SL(3)
can be written as

H(p) = exp

p1 p2 p3

p4 −p1 − p8 p5

p6 p7 p8

 , (4.7)

where exp is the exponential map (i.e. matrix exponential). H is the identity transformation when
p is an all-zeros vector. Warp composition can thus be expressed as the addition of parameters,
i.e. pa ◦ pb ≡ pa + pb ∀pa,pb ∈ sl(3); furthermore, det(H) = 1 ∀H ∈ SL(3).

The exponential map is also Taylor-expandable as

H(p) = exp(X(p)) = lim
K→∞

K∑
k=0

Xk(p)

k!
. (4.8)

We implement the sl(3) parameterization using the Taylor approximation expression with K = 20.

4.A.3 Training Details

For all experiments, we set the batch size for all experiments to be 20. Unless otherwise specified,
we initialize all learnable weights in the networks from N (0, 0.01) and all biases to be 0. All
deep learning approaches are trained with Adam optimization [85]. We set λgrad = 10 following
Gulrajani et al. [53].

We describe settings for specific experiments as follows.
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3D cubes. We create 4000 samples of 3D cube/room pairs with random colors, as described in
the paper. For the initial warp p0, we generate random homography perturbations p0 by sampling
each element of p0 from N (0, 0.1), i.e. p0 ∼ N (0, 0.1I). This is applied to a canonical frame
with x and y coordinates normalized to [−1, 1] and subsequently transformed back to the image
frame. We train ST-GAN with 4 sequential warps, each for 50K iterations (with perturbations
generated on the fly) with the learning rates for both G and D to be 10−4. We set λupdate = 0.1 in
this experiment.

Indoor objects. For the self-supervised baselines (HomographyNet [32] and SDM [199]), we
generate random homography perturbations p0 using the same noise model as that from the 3D
cubes experiment.

We train HomographyNet for 200K iterations (with perturbations generated on the fly) with
a learning rate of 10−4. For SDM, we vectorize the grayscale images to be the feature as was
practiced for image alignment [100]; in our case, we concatenate those of the background and
masked foreground as the final extracted feature. We generate 750K perturbed examples (more
than 10 perturbed examples per training sample) to train each linear regressor. Also as was
practiced [100, 199], we add an `2 regularization term to the SDM least-squares objective function
and search for the penalty factor by evaluating on a separate validation set.

We initialize each of the ST-GAN generators Gi with the pretrained HomographyNet as we
find it to be better-conditioned. During adversarial training, we train each Gi for 40K iterations
with the learning rate for Gi to be 10−6 and that ofD to be 10−4. In the final end-to-end fine-tuning
stage, we train all Gi for 40K iterations using the same learning rates (10−6 for all Gi and 10−4 for
D). The non-sequential ST-GAN baseline is trained for 160K iterations with the same learning
rates. We set λupdate = 0.3 in this experiment.

Glasses. For data augmentation, we perturb the faces with random similarity transformations
from N (0, 0.1) for rotation (radian) and N (0, 0.05) for translation (scaled by the image dimen-
sions, in both x and y directions). The glasses are perturbed using the same random homography
noise model as used in the 3D cubes experiment.

We train ST-GAN with 5 sequential warps, each for 50K iterations with the learning rates for
both G and D to be 10−5. As a preconditioning step, we also pretrain the discriminator D using
only the initial fake samples and real samples for 50K iterations with the same learning rate. We
set λupdate = 1 in this experiment.

4.A.4 Additional Indoor Object Results

We include additional qualitative results from the indoor object experiment in Fig. 4.12. Compared
to the baselines, ST-GAN consistently predicts more realistic geometric corrections in most cases.
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4.A.5 Additional Glasses Results

We also include additional qualitative results from the glasses experiment in Fig. 4.13. We
re-emphasize that the training data here is unpaired and there is no information in the dataset
about where the glasses are placed. Despite these, ST-GAN is able to consistently match the
initial glasses foreground to the background faces.
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(a)

(b)

initial compositeoriginal 1st update 2nd update 3rd update 4th update 5th update

Figure 4.11: Glasses compositing results. (a) The glasses progressively moves into a more
realistic position. (b) ST-GAN learns to warp various kinds of glasses such that the resulting
positions are usually realistic. The top rows indicates the initial composite, and the bottom rows
indicates the ST-GAN output. The last 4 examples shows failure cases, where glasses fail to
converge onto the faces.
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Figure 4.12: Additional qualitative results from the indoor object experiment (test set). The yellow
arrows in the second row point to the composited foreground objects.
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Figure 4.13: Additional qualitative results from the glasses experiment (test set). The top row
indicates the initial composite, and the bottom row indicates the ST-GAN output.
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Part II

Learning Dense 3D Reconstruction
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Chapter 5

Multi-view Supervision from Depth Maps

5.1 Introduction

Generative models using convolutional neural networks (ConvNets) have achieved state of the
art in image/object generation problems. Notable works of the class include variational autoen-
coders [86] and generative adversarial networks [48], both of which have drawn large success
in various applications [70, 142, 188, 202, 220]. With the recent introduction of large publicly
available 3D model repositories [16, 195], the study of generative modeling on 3D data using
similar frameworks has also become of increasing interest.

In computer vision and graphics, 3D object models can take on various forms of represen-
tations. Of such, triangular meshes and point clouds are popular for their vectorized (and thus
scalable) data representations as well as their compact encoding of shape information, optionally
embedded with texture. However, this efficient representation comes with an inherent drawback
as the dimensionality per 3D shape sample can vary, making the application of learning methods
problematic. Furthermore, such data representations do not elegantly fit within conventional
ConvNets as Euclidean convolutional operations cannot be directly applied. Hitherto, most
existing works on 3D model generation resort to volumetric representations, allowing 3D Eu-
clidean convolution to operate on regular discretized voxel grids. 3D ConvNets (as opposed to
the classical 2D form) have been applied successfully to 3D volumetric representations for both
discriminative [62, 121, 195] and generative [21, 47, 193, 203] problems.

Despite their recent success, 3D ConvNets suffer from an inherent drawback when modeling
shapes with volumetric representations. Unlike 2D images, where every pixel contains mean-
ingful spatial and texture information, volumetric representations are information-sparse. More
specifically, a 3D object is expressed as a voxel-wise occupancy grid, where voxels “outside” the
object (set to off) and “inside” the object (set to on) are unimportant and fundamentally not of
particular interest. In other words, the richest information of shape representations lies on the
surface of the 3D object, which makes up only a slight fraction of all voxels in an occupancy
grid. Consequently, 3D ConvNets are extremely wasteful in both computation and memory in
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trying to predict much unuseful data with high-complexity 3D convolutions, severely limiting
the granularity of the 3D volumetric shapes that can be modeled even on high-end GPU-nodes
commonly used in deep learning research.

In this chapter, we propose an efficient framework to represent and generate 3D object shapes
with dense point clouds. We achieve this by learning to predict the 3D structures from multiple
viewpoints, which is jointly optimized through 3D geometric reasoning. In contrast to prior art that
adopts 3D ConvNets to operate on volumetric data, we leverage 2D convolutional operations to
predict points clouds that shape the surface of the 3D objects. Our experimental results show that
we generate much denser and more accurate shapes than state-of-the-art 3D prediction methods.

Our contributions are summarized as follows:

• We advocate that 2D ConvNets are capable of generating dense point clouds that shapes the
surface of 3D objects in an undiscretized 3D space.

• We introduce a pseudo-rendering pipeline to serve as a differentiable approximation of
true rendering. We further utilize the pseudo-rendered depth images for 2D projection
optimization for learning dense 3D shapes.

• We demonstrate the efficacy of our method on single-image 3D reconstruction problems,
which significantly outperforms state-of-the-art methods.

5.2 Related Work

3D shape generation. As 2D ConvNets have demonstrated huge success on a myriad of image
generation problems, most works on 3D shape generation follow the analogue using 3D ConvNets
to generate volumetric shapes. Prior works include using 3D autoencoders [47] and recurrent
networks [21] to learn a latent representation for volumetric data generation. Similar applications
include the use of an additional encoded pose embedding to learn shape deformations [211] and
using adversarial training to learn more realistic shape generation [44, 193]. Learning volumetric
predictions from 2D projected observations has also been explored [44, 148, 203], which use
3D differentiable sampling on voxel grids for spatial transformations [71]. Constraining the ray
consistency of 2D observations have also been suggested very recently [177].

Most of the above approaches utilize 3D convolutional operations, which is computationally
expensive and allows only coarse 3D voxel resolution. The lack of granularity from such
volumetric generation has been an open problem following these works. Riegler et al. [151]
proposed to tackle the problem by using adaptive hierarchical octary trees on voxel grids to
encourage encoding more informative parts of 3D shapes. Concurrent works follow to use similar
concepts [56, 173] to predict 3D volumetric data with higher granularity.

Recently, Fan et al. [40] also sought to generate unordered point clouds by using variants
of multi-layer perceptrons to predict multiple 3D coordinates. However, the required learnable
parameters linearly proportional to the number of 3D point predictions and does not scale well;
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Figure 5.1: Network architecture. From an encoded latent representation, we propose to use
a structure generator (Sec 5.3.1), which is based on 2D convolutional operations, to predict the
3D structure at N viewpoints. The point clouds are fused by transforming the 3D structure at
each viewpoint to the canonical coordinates. The pseudo-renderer (Sec. 5.3.2) synthesizes depth
images from novel viewpoints, which are further used for joint 2D projection optimization. This
contains no learnable parameters and reasons based purely on 3D geometry. s

in addition, using 3D distance metrics as optimization criteria is intractable for large number
of points. In contrast, we leverage convolutional operations with a joint 2D project criterion to
capture the correlation between generated point clouds and optimize in a more computationally
tractable fashion.

3D view synthesis. Research has also been done in learning to synthesize novel 3D views of 2D
objects in images. Most approaches using ConvNets follow the convention of an encoder-decoder
framework. This has been explored by mixing 3D pose information into the latent embedding
vector for the synthesis decoder [136, 172, 216]. A portion of these works also discussed the
problem of disentangling the 3D pose representation from object identity information [91, 145,
206], allowing further control on the identity representation space.

The drawback of these approaches is their inefficiency in representing 3D geometry — as we
later show in the experiments, one should explicitly factorize the underlying 3D geometry instead
of implicitly encoding it into mixed representations. Resolving the geometry has been proven
more efficient than tolerating in several works (e.g. Spatial Transformer Networks [71, 99]).

5.3 Approach

Our goal is to generate 3D predictions that compactly shape the surface geometry with dense point
clouds. The overall pipeline is illustrated in Fig. 5.1. We start with an encoder that maps the input
data to a latent representation space. The encoder may take on various forms of data depending

71



on the application; in our experiments, we focus on encoding RGB images for single-image
3D reconstruction tasks. From the latent representation, we propose to generate the dense point
clouds using a structure generator based on 2D convolutions with a joint 2D projection criterion,
described in detail as follows.

5.3.1 Structure Generator

The structure generator predicts the 3D structure of the object at N different viewpoints (along
with their binary masks), i.e. the 3D coordinates x̂i = [x̂i ŷi ẑi]

> at each pixel location. Pixel
values in natural images can be synthesized through convolutional generative models mainly due
to their exhibition of strong local spatial dependencies; similar phenomenons can be observed
for point clouds when treating them as (x, y, z) multi-channel images on a 2D grid. Based on
this insight, the structure generator is mainly based on 2D convolutional operations to predict the
(x, y, z) images representing the 3D surface geometry. This approach circumvents the need of
time-consuming and memory-expensive 3D convolutional operations for volumetric predictions.
The evidence of such validity is verified in our experimental results.

Assuming the 3D rigid transforma matrices of theN viewpoints (R1, t1)...(RN , tN) are given,
each 3D point x̂i at viewpoint n can be transformed to the canonical 3D coordinates as p̂i via

p̂i = R−1
n

(
K−1x̂i − tn

)
∀i , (5.1)

where K is the predefined camera intrinsic matrix. This defines the relationship between the
predicted 3D points and the fused collection of point clouds in the canonical 3D coordinates,
which is the outcome of our network.

5.3.2 Joint 2D Projection Optimization

To learn point cloud generation using the provided 3D CAD models as supervision, the standard
approach would be to optimize over a 3D-based metric that defines the distance between the
point cloud and the ground-truth CAD model (e.g. Chamfer distance [40]). Such metric usually
involves computing surface projections for every generated point, which can be computationally
expensive for very dense predictions, making it intractable.

We overcome this issue by alternatively optimizing over the joint 2D projection error of
novel viewpoints. Instead of using only projected binary masks as supervision [44, 148, 203], a
well-generated 3D shape should also have the ability to render reasonable depth images from any
viewpoint. To realize this concept, we introduce the pseudo-renderer, a differentiable module to
approximate true rendering, to synthesize novel depth images from dense point clouds.

Pseudo-rendering. Given the 3D rigid transformation matrix of a novel viewpoint (Rk, tk),
each canonical 3D point p̂i can be further transformed to x̂′i back in the image coordinates via

x̂′i = K (Rkp̂i + tk) ; ; ∀i . (5.2)
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Figure 5.2: Concept of pseudo-rendering. Multiple transformed 3D points may correspond to
projection on the same pixels in the image space. (a) Collision could easily occur if (x̂′i, ŷ

′
i) were

directly discretized. (b) Upsampling the target image increases the precision of the projection
locations and thus alleviates the collision effect. A max-pooling operation on the inverse depth
values follows as to obtain the original resolution while maintaining the effective depth value
at each pixel. (c) Examples of pseudo-rendered depth images with various upsampling factors
U (only valid depth values without collision are shown). Pseudo-rendering achieves closer
performance to true rendering with a higher value of U .

This is the inverse operation of Eq. (5.1) with different transformation matrices and can be
combined with Eq. (5.1) together, composing a single effective transformation. By such, we
obtain the (x̂′i, ŷ

′
i) location as well as the new depth value ẑ′i at viewpoint k.

To produce a pixelated depth image, one would also need to discretize all (x̂′i, ŷ
′
i) coordinates,

resulting in possibly multiple transformed points projecting and “colliding” onto the same pixel
(Fig. 5.2). We resolve this issue with the pseudo-renderer fPR(·), which increases the projection
resolution to alleviate such collision effect. Specifically, x̂′i is projected onto a target image
upsampled by a factor of U , reducing the quantization error of (x̂′i, ŷ

′
i) as well as the probability

of collision occurrence. A max-pooling operation on the inverse depth values with kernel size
U follows to downsample back to the original resolution while maintaining the minimum depth
value at each pixel location. We use such approximation of the rendering operation to maintain
differentiability and parallelizability within the backpropagation framework.

Optimization. We use the pseudo-rendered depth images Ẑ = fPR({x̂′i}) and the resulting
masks M̂ at novel viewpoints for optimization. The loss function consists of the mask loss Lmask

and the depth loss Ldepth, respectively defined as

Lmask =
K∑
k=1

−Mk log M̂k − (1−Mk) log
(

1− M̂k

)
and Ldepth =

K∑
k=1

∥∥∥Ẑk − Zk

∥∥∥
1
,

(5.3)

where we simultaneously optimize over K novel viewpoints at a time. Mk and Zk are the ground-
truth mask and depth images at the kth novel viewpoint. We use element-wise L1 loss for the
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Sec. Input Latent Number of filters
size vector image encoder structure generator

5.4.1 64×64 512-D
conv: 96, 128, 192, 256 linear: 1024, 2048, 4096
linear: 2048, 1024, 512 deconv: 192, 128, 96, 64, 48

5.4.2 128×128 1024-D
conv: 128, 192, 256, 384, 512 linear: 2048, 4096, 12800
linear: 4096, 2048, 1024 deconv: 384, 256, 192, 128, 96

Table 5.1: Architectural details of our proposed method for each experiment.

depth (posing it as a pixel-wise binary classification problem) and cross-entropy loss for the mask.
The overall loss function is defined as L = Lmask + λ · Ldepth, where λ is the weighting factor.

Optimizing the structure generator over novel projections enforces joint 3D geometric reason-
ing between the predicted point clouds from the N viewpoints. It also allows the optimization
error to evenly distribute across novel viewpoints instead of focusing on the fixed N viewpoints.

5.4 Experiments

We evaluate our proposed method by analyzing its performance in the application of single-image
3D reconstruction and comparing against state-of-the-art methods.

Data preparation. We train and evaluate all networks using the ShapeNet database [16], which
contains a large collection of categorized 3D CAD models. For each CAD model, we pre-render
100 depth/mask image pairs of size 128×128 at random novel viewpoints as the ground truth
of the loss function. We consider the entire space of possible 3D rotations (including in-plane
rotation) for the viewpoints and assume identity translation for simplicity. The input images are
objects pre-rendered from a fixed elevation and 24 different azimuth angles.

Architectural details. The structure generator follows the structure of conventional deep gener-
ative models, consisting of linear layers followed by 2D convolution layers (with kernel size 3×3).
The dimensions of all feature maps are halved after each encoder convolution and doubled after
each generator convolution. Details of network dimensions are listed in Table 5.1. At the end of
the decoder, we add an extra convolution layer with filters of size 1×1 to encourage individuality
of the generated pixels. Batch normalization [69] and ReLU are added between all layers.

The generator predicts N = 8 images of size 128×128 with 4 channels (x, y, z and the binary
mask), where the fixed viewpoints are chosen from the 8 corners of a centered cube. Orthographic
projection is assumed in the transformation in (5.1) and (5.2). We use U = 5 for the upsampling
factor of the pseudo-renderer in our experiments.
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Training details. All networks are optimized using the Adam optimizer [85]. We take a two-
stage training procedure: the structure generator is first pretrained to predict the depth images
from the N viewpoints (with a constant learning rate of 1e-2), and then the entire network is
fine-tuned with joint 2D projection optimization (with a constant learning rate of 1e-4). For the
training parameters, we set λ = 1.0 and K = 5.

Quantitative metrics. We measure using the average point-wise 3D Euclidean distance between
two 3D models: for each point p̂i in the source model, the distance to the target model S is
defined as Ei = minpj∈S ‖p̂i − pj‖2. This metric is defined bidirectionally as the distance from
the predicted point cloud to the ground-truth CAD model and vice versa. It is necessary to report
both metrics for they represent different aspects of quality — the former measures 3D shape
similarity and the latter measures surface coverage [88]. We represent the ground-truth CAD
models as collections of uniformly densified 3D points on the surfaces (100K densified points in
our settings).

5.4.1 Single Object Category

We start by evaluating the efficacy of our dense point cloud representation on 3D reconstruction for
a single object category. We use the chair category from ShapeNet, which consists of 6,778 CAD
models. We compare against (a) Tatarchenko et al. [172], which learns implicit 3D representations
through a mixed embedding, and (b) Perspective Transformer Networks (PTN) [203], which
learns to predict volumetric data by minimizing the projection error. We include two variants
of PTN as well as a baseline 3D ConvNet from Yan et al. [203]. We use the same 80%-20%
training/test split provided by Yan et al. [203].

We pretrain our network for 200K iterations and fine-tune end-to-end for 100K iterations. For
the method of Tatarchenko et al. [172], we evaluate by predicting depth images from our same N
viewpoints and transform the resulting point clouds to the canonical coordinates. This shares the
same network architecture to ours, but with 3D pose information additionally encoded using 3
linear layers (with 64 filters) and concatenated with the latent vector. We use the novel depth/mask
pairs as direct supervision for the decoder output and train this network for 300K iterations with a
constant learning rate of 1e-2. For PTN [203], we extract the surface voxels (by subtracting the
prediction by its eroded version) and rescale them such that the tightest 3D bounding boxes of
the prediction and the ground-truth CAD models have the same volume. We use the pretrained
models readily provided by the authors.

The quantitative results on the test split are reported in Table 5.2. We achieve a lower average
3D distance than all baselines in both metrics, even though our approach is optimized with joint
2D projections instead of these 3D error metrics. This demonstrates that we are capable of
predicting more accurate shapes with higher density and finer granularity. This highlights the
efficiency of our approach using 2D ConvNets to generate 3D shapes compared to 3D ConvNet
methods such as PTN [203] as they attempt to predict all voxel occupancies inside a 3D grid space.
Compared to Tatarchenko et al. [172], an important takeaway is that 3D geometry should explicitly
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Method 3D error metric
pred. → GT GT→ pred.

3D ConvNet (vol. only) [203] 1.827 2.660
PTN (proj. only) [203] 2.181 2.170
PTN (vol. & proj.) [203] 1.840 2.585
Tatarchenko et al. [172] 2.381 3.019
Proposed method 1.768 1.763

Table 5.2: Average 3D test error of the single-category experiment. Our method outperforms
all baselines in both metrics, indicating the superiority in fine-grained shape similarity and point
cloud coverage on the surface. (All numbers are scaled by 0.01)

27018 pts.26495 pts.2219 pts.2701 pts.2184 pts.

17506 pts.17325 pts.1765 pts.2233 pts.1659 pts.
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(vol. & proj.)
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(proj. only)3D ConvNet

ground-truth
CAD model

15318 pts.18584 pts.1141 pts.1526 pts.1117 pts.

Figure 5.3: Qualitative results from the single-category experiment. Our method generates denser
predictions compared to the volumetric baselines and more accurate shapes than Tatarchenko et
al. [172], which learns 3D synthesis implicitly. The RGB values of the point cloud represents the
3D coordinate values. Best viewed in color.

factorized when possible instead of being implicitly learned by the network parameters. It is much
more efficient to focus on predicting the geometry from a sufficient number of viewpoints and
combining them with known geometric transformations.

We visualize the generated 3D shapes in Fig. 5.3. Compared to the baselines, we predict more
accurate object structures with a much higher point cloud density (around 10× higher than 323

volumetric methods). This further highlights the desirability of our approach — we are able to
efficiently use 2D convolutional operations and utilize high-resolution supervision given similar
memory budgets.
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Category 3D-R2N2 [21] Fan et al. [40] Proposed
1 view 3 views 5 views (1 view) (1 view)

airplane 3.207 / 2.879 2.521 / 2.468 2.399 / 2.391 1.301 / 1.488 1.294 / 1.541
bench 3.350 / 3.697 2.465 / 2.746 2.323 / 2.603 1.814 / 1.983 1.757 / 1.487

cabinet 1.636 / 2.817 1.445 / 2.626 1.420 / 2.619 2.463 / 2.444 1.814 / 1.072
car 1.808 / 3.238 1.685 / 3.151 1.664 / 3.146 1.800 / 2.053 1.446 / 1.061

chair 2.759 / 4.207 1.960 / 3.238 1.854 / 3.080 1.887 / 2.355 1.886 / 2.041
display 3.235 / 4.283 2.262 / 3.151 2.088 / 2.953 1.919 / 2.334 2.142 / 1.440
lamp 8.400 / 9.722 6.001 / 7.755 5.698 / 7.331 2.347 / 2.212 2.635 / 4.459

loudspeaker 2.652 / 4.335 2.577 / 4.302 2.487 / 4.203 3.215 / 2.788 2.371 / 1.706
rifle 4.798 / 2.996 4.307 / 2.546 4.193 / 2.447 1.316 / 1.358 1.289 / 1.510
sofa 2.725 / 3.628 2.371 / 3.252 2.306 / 3.196 2.592 / 2.784 1.917 / 1.423
table 3.118 / 4.208 2.268 / 3.277 2.128 / 3.134 1.874 / 2.229 1.689 / 1.620

telephone 2.202 / 3.314 1.969 / 2.834 1.874 / 2.734 1.516 / 1.989 1.939 / 1.198
watercraft 3.592 / 4.007 3.299 / 3.698 3.210 / 3.614 1.715 / 1.877 1.813 / 1.550

mean 3.345 / 4.102 2.702 / 3.465 2.588 / 3.342 1.982 / 2.146 1.846 / 1.701

Table 5.3: Average 3D test error of the multi-category experiment, where the numbers are
shown as [ prediction→GT / GT→prediction ]. The mean is computed across categories. For the
single-view case, we outperform all baselines in 8 and 10 out of 13 categories for the two 3D error
metrics. (All numbers are scaled by 0.01)

5.4.2 General Object Categories

We also evaluate our network on the single-image 3D reconstruction task trained with multiple
object categories. We compare against (a) 3D-R2N2 [21], which learns volumeric predictions
through recurrent networks, and (b) Fan et al. [40], which predicts an unordered set of 1024 3D
points. We use 13 categories of ShapeNet for evaluation (listed in Table 5.3), where the 80%-20%
training/test split is provided by Choy et al. [21]. We evaluate 3D-R2N2 by its surface voxels
using the same procedure as described in Sec. 5.4.1. We pretrain our network for 300K iterations
and fine-tune end-to-end for 100K iterations; for the baselines, we use the pretrained models
readily provided by the authors.

We list the quantitative results in Table 5.3, where the metrics are reported per-category. Our
method achieves an overall lower error in both metrics. We outperform the volumetric baselines
(3D-R2N2) by a large margin and has better prediction performance than Fan et al. in most cases.
We also visualize the predictions in Fig. 5.4; again we see that our method predicts more accurate
shapes with higher point density. Our method can be more problematic when objects contain very
thin structures (e.g. lamps); adding hybrid linear layers [40] may help improve performance.
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Figure 5.4: Qualitative results from the multi-category experiment. Our method generates denser
and more certain predictions compared to the baselines.
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Figure 5.5: Dense shapes generated from interpolated latent embeddings of two input images
(leftmost and rightmost). The interpolated shapes maintain reasonable structures of chairs.

5.4.3 Generative Representation Analysis

We analyze the learned generative representations by observing the 3D predictions from manip-
ulation in the latent space. Previous works have demonstrated that deep generative networks
can generate meaningful pixel/voxel predictions by performing linear operations in the latent
space [34, 142, 193]; here, we explore the possibility of such manipulation for dense point clouds
in an undiscretized space.

We show in Fig. 5.5 the resulting dense shapes generated from the embedding vector interpo-

78



Figure 5.6: Dense shapes generated from arithmetic operations in the latent space (left: tables,
right: chairs), where the input images are shown in the top row.

Figure 5.7: Comparison on the effects of the
joint 2D optimization step (left figure: before,
right figure: after). Optimizing only on the fixed
viewpoints results in a denser point cloud but
also with higher noise.

Joint 3D error Predicted
2D opt. metric points
Before 1.933 / 1.307 31,972
After 1.768 / 1.763 25,401

Table 5.4: Optimizing on the novel view-
points greatly reduces the noise while trad-
ing off partial surface coverage density.
(The errors are shown as [ prediction→GT /
GT→prediction ] and scaled by 100)

lated in the latent space. The morphing transition is smooth with plausible interpolated shapes,
which suggests that our structure generator can generate meaningful 3D predictions from convex
combinations of encoded latent vectors. The structure generator is also capable of generating
reasonable novel shapes from arithmetic results in the latent space — from Fig. 5.6) we observe
semantic feature replacement of table height/shape as well as chair arms/backs. These results
suggest that the high-level semantic information encoded in the latent vectors are manipulable
and interpretable of the resulting dense point clouds through the structure generator.

5.4.4 Ablative Analysis

We provide ablation studies on two of the key components of our proposed method: (1) the joint
2D optimization step and (2) the variability of the x, y coordinates of the structure generator
output. We focus this analysis on the single-category experiment.

Joint 2D optimization. We validate the necessity of the second training stage of optimizing the
network with supervision from novel viewpoints. We compare the performance of our network
before and after the joint 2D projection optimization step in Table 3. We see that while optimizing
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Output of 3D error metric
structure generator pred. → GT GT→ pred.
Depth image (z) only 1.764 2.086
xyz-channel images 1.768 1.763

Table 5.5: Comparison on the variability of the x, y coordinates of the multi-view output. Allowing
the x, y coordinates to vary improves surface coverage. (All numbers are scaled by 100)

only on the fixed viewpoints results in more generated points closer to the ground-truth surface, it
is also creates a considerable amount of noisy points in loss of shape accuracy. Fig. 5.7 visualizes
the effect of joint optimization to eliminate most of the noisy points, demonstrating the necessity
of such additional step.

Variability of x, y coordinates. Instead of having the structure generator to predict the x, y, z
coordinates and the binary masks, one could alternatively design it to predict only the masked
depth image (i.e. the z coordinates and the mask) and fix the x, y coordinates to the image
regular grids. We show the difference in performance in Table 5.5. We see that enabling the x, y
coordinates to vary not only leads to similar accuracy in shape prediction, but also allows higher
surface coverage. There is also little increase in the number of learnable parameters from doubling
the output channels in the final convolution layer.

5.5 Conclusion

In this chapter, we introduced a framework for generating 3D shapes in the form of dense point
clouds. Compared to conventional volumetric prediction methods using 3D ConvNets, it is more
efficient to utilize 2D convolutional operations to predict surface information of 3D shapes. We
showed that by introducing a pseudo-renderer, we are able to synthesize approximate depth images
from novel viewpoints to optimize the 2D projection error within a backpropagation framework.
Experimental results for single-image 3D reconstruction tasks showed that we generate more
accurate and much denser 3D shapes than state-of-the-art 3D reconstruction methods.
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Chapter 6

Single-View Training from Static Image
Collections

6.1 Introduction

Humans have strong capabilities to reason about 3D geometry in our visual world. When we see
an object, not only can we infer its shape and appearance, but we can also speculate the underlying
3D structure. We learn to develop the concepts of 3D geometry and semantic priors, as well as
the ability to mentally reconstruct the 3D world. Somehow through visual perception, i.e. just
looking at a collection of 2D images, we have the ability to infer the 3D geometry of the objects
in those images.

Researchers have sought to emulate such ability of 3D shape recovery from a single 2D image
for AI systems, where success has been drawn specifically through neural networks. Although
one could train such networks naively from images with associated ground-truth 3D shapes, such
paired data are difficult to come by at scale. While most works have resorted to 3D object datasets,
in which case synthetic image data can be created pain-free through rendering engines, the domain
gap between synthetic and real images has prevented them from practical use. An abundant source
of supervision that can be practically obtained for real-world image data is one problem that
looms large in the field.

In the quest to eliminate the need for direct 3D supervision, recent research have attempted
to tackle the problem of learning 3D shape recovery from 2D images with object silhouettes,
which are easier to annotate in practice. This line of works seeks to maximize the reprojection
consistency of 3D shape predictions to an ensemble of training images. While success has
been shown on volumetric [177] and mesh-based [83, 109] reconstruction, such discretized 3D
representations have drawbacks. Voxels are inefficient for representing shape surfaces as they are
sparse by nature, while meshes are limited to deforming from fixed templates as learning adaptive
mesh topologies is a nontrivial problem. Implicit shape representations become a more desirable
choice for overcoming these limitations.
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Figure 6.1: Learning 3D SDF shape reconstruction from static images. SDF-SRN learns im-
plicit shape reconstruction from single-view images and 2D silhouettes at training time, allowing
practical applications of real-world 3D object reconstruction trained from static image datasets.

Differentiable rendering methods for reconstructing 3D implicit representations have since
sparked wide interest [108, 131]. Previous works, however, have required a multi-view setup,
where objects are observed from multiple viewpoints with silhouette annotations. Since such data
is difficult to obtain en masse, it has been unclear to the community how one can learn dense
3D reconstruction from single images at training time, where each individual object instance is
assumed observed only once.

In this chapter, we make significant advances on learning dense 3D object reconstruction
from single images and silhouettes, without the knowledge of the underlying shape structure
or topology. To this end, we derive a formulation to learn signed distance functions (SDF) as
the implicit 3D representation from images, where we take advantage of distance transform on
silhouettes to provide rich geometric supervision from all pixels of an image. In addition, we
build a differentiable rendering framework upon the recently proposed Scene Representation
Network [161] for efficient optimization of shape surfaces. The proposed method, SDF-SRN,
achieves state-of-the-art 3D object reconstruction results on challenging scenarios that requires
only a single observation for each instance during training time. SDF-SRN also learns high-quality
3D reconstruction from real-world static images with single-view supervision (Fig. 6.1), which
was not possible with previous implicit shape reconstruction methods.

In summary, we present the following contributions:

• We establish a novel mathematical formulation to optimize 3D SDF representations from 2D
distance transform maps for learning dense 3D object reconstruction without 3D supervision.

• We propose an extended differentiable rendering algorithm that efficiently optimizes for
the 3D shape surfaces from RGB images, which we show to be suitable only for SDF
representations.

• Our method, SDF-SRN, significantly outperforms state-of-the-art 3D reconstruction methods
on ShapeNet [16] trained with single-view supervision, as well as natural images from the
PASCAL3D+ [197] dataset without 3D supervision nor externally pretrained 2.5D/3D priors.
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6.2 Related Work

Learning 3D reconstruction without 3D supervision. The classical shape-from-silhouette
problem [82, 93] can be posed as a learning problem by supervising the visual hull with a
collection of silhouette images using a differentiable projection module. The reconstructed visual
hull can take the forms of voxels [44, 203], point clouds [101], or 3D meshes [83, 109]. RGB
images can also serve as additional supervisory signals if available [81, 103, 177]. While these
methods learn from 2D supervision sources that are easier to obtain, they typically require multi-
view observations of the same objects to be available. To this end, Kanazawa et al. [79] took a
first step towards 3D reconstruction from static image collections by jointly optimizing for mesh
textures and shape deformations.

Deep implicit 3D representations [19, 123, 137] has recently attracted wide interest to 3D
reconstruction problems for their power to model complex shape topologies at arbitrary resolutions.
Research efforts on learning implicit 3D shapes without 3D supervision have primarily resorted to
binary occupancy [110, 131] as the representation, aiming to match reprojected 3D occupancy to
the given binary masks. Current works adopting signed distance functions (SDF) either require
a pretrained deep shape prior [108] or are limited to discretized representations [76] that do not
scale up with resolution. Our method learns SDF representations without pretrained priors by
establishing a more explicit geometric connection to 2D silhouettes via distance transform.

Neural image rendering. Rendering 2D images from 3D shapes is classically a non-differentiable
operation in computer graphics, but recent research has advanced on making the operation dif-
ferentiable and incorporable with neural networks. Differentiable (neural) rendering has been
utilized for learning implicit 3D-aware representations [112, 129, 162], where earlier methods
encode 3D voxelized features respecting the corresponding 2D pixel locations of images. Such
3D-aware representations, however, refrain one from interpreting explicit 3D geometric structures
that underlies in the images. Recently, Scene Representation Networks (SRN) [161] offered up
a solution of learning depth from images by keeping a close proximity of neural rendering to
classical ray-tracing in computer graphics. An advantage of SRN lies in its efficiency by learning
the ray-tracing steps, in contrast to methods that requires dense sampling along the rays [126, 131].
We take advantage of this property for 3D reconstruction, which we distinguish from “3D-aware
representations”, in the sense that globally consistent 3D geometric structures are recovered
instead of view-dependent depth predictions.

6.3 Approach

Our 3D shape representation is a continuous implicit function f : R3 → R, where the 3D surface
is defined by the zero level set S = {x ∈ R3 | f(x) = 0}. We define f as a multi-layer
perceptron (MLP); since MLPs are composed of continuous functions (i.e. linear transformations
and nonlinear activations), f is also continuous (almost everywhere) by construction. Therefore,
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the surface of a 3D shape defined by S is dense and continuous, forming a 2-manifold embedded
in the 3D space.

6.3.1 Learning 3D Signed Distance Functions from 2D Silhouettes

Shape silhouettes are important for learning 3D object representations: the projection of a 3D
shape should match the silhouettes of a 2D observation under the given camera pose. One
straightforward approach is to utilize silhouettes as binary masks that provide supervision on the
projected occupancy, as adopted in most previous 3D-unsupervised reconstruction methods [83,
109, 110, 131]. This class of methods aims to optimize for the 3D shapes such that the projected
occupancy maps are maximally matched across viewpoints. However, 2D binary occupancy maps
offer little geometric supervision of the 3D shape surfaces except at pixel locations where the
occupancy map changes value.

Our key insight is that the geometric interpretation of 2D silhouettes has a potentially richer
explicit connection to the 3D shape surface S , since 2D silhouettes result from the direct projection
of the generating contours on S. We can thus take advantage of the 2D distance transform on
the silhouettes, where each pixel encodes the minimum distance to the 2D silhouette(s) instead
of binary occupancy. 2D distance transform is a deterministic operation on binary masks [26],
and thus the output contains the same amount of information; however, such information about
the geometry is dispersed to all pixels of an image. This allows us to treat 2D distance transform
maps as “projections” of 3D signed distance functions (SDF), providing richer supervision on 3D
shapes so that all pixels can contribute.

We discuss necessary conditions on the validity of 3D SDFs constrained by the given 2D
distance transform maps, where we focus on the set of pixels exterior to the silhouette (denoted as
X). We denote u ∈ R2 as the pixel coordinates and z ∈ R as projective depth. Furthermore, we
denote D : R2 → R as the (Euclidean) distance transform, where D(u) encodes the distance of
pixel coordinates u to the 2D silhouette. We assume the camera principal point is at 0 ∈ R2.
Proposition. If f is a valid 3D SDF, then under (calibrated) perspective cameras,

f(zū) ≥ b(z; u) = z ·
∥∥∥∥ū− v̄>ū

v̄>v̄
v̄

∥∥∥∥
2

∀z ≥ 1, u ∈ X , (6.1)

where

v =

(
1 +
D(u)

‖u‖2

)
u (6.2)

is the 2D point on the u-centered circle of radius D(u) while being farthest away from the
principle point, ū = [u; 1] ∈ R3 and v̄ = [v; 1] ∈ R3 are the respective homogeneous coordinates
of u and v, and b(z; u) is a lower bound on the SDF value at 3D point location zū.

Proof outline. By the definition of distance transforms, any 2D point within the circle of radius
D(u) centered at u must be free space. The back-projection of this circle from the camera
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Figure 6.2: Learning 3D SDFs from 2D images. (a) For each pixel u exterior to the 2D
silhouette and its distance transform value D(u), any 2D point inside the red circle (of radius
D(u)) must also be exterior to the silhouette. The back-projection of this circle, forming a cone
in the 3D space, must correspondingly be free space. When u is back-projected into the 3D
space to depth z, a lower bound b(z; u) on the SDF value can be computed as the radius of the
sphere centered at zū and inscribed by the cone (see the supplementary material for detailed
derivations). (b) For each pixel inside the 2D silhouette, the closest zero-crossing z?ū with the
surface S = {x ∈ R3 | f(x) = 0} can be determined via the bisection method between the last
two traced points z(N−1)ū and z(N)ū, where opposite signs are encouraged via loss functions
in (6.7) (indicated by the colors on the points).

center forms a cone (oblique if u 6= 0), where any 3D point within must also be free space.
Therefore, the radius of the sphere centered at zū and inscribed by the cone serves as a lower
bound b(z; u) = ‖zū− z′v̄‖2 for f(zū), where z′v̄ is the tangent point of the sphere and the
conical surface (with v on the 2D circle back-projected to depth z′). One can thus find b(z; u) by
solving the minimization problem

min
v,z′≥0

‖zū− z′v̄‖2
2 subject to ‖v − u‖2 = D(u) . (6.3)

The first-order optimality conditions on v and z′ leads to the closed-form solution in (6.1).

While we leave the full mathematical proof to the supplementary material, a visual sketch of
the above proposition is shown in Fig. 6.2(a). This states that for any 3D point zū ∈ R3, we can
always find a lower bound b(z; u) on its possible SDF value from the given distance transform. It
can also be shown that b(z; u) = D(u) for the special case of orthographic camera models.

We take advantage of (6.1) to optimize f , which we parametrize with θ. At each training
iteration, we randomly sample M depth values z̃ for each pixel u and formulate the loss as

LSDF(θ) =

∑
u∈Xw(u) ·

∑
z̃ max

(
0, b(z̃; u)− fθ(z̃ū)

)∑
u∈Xw(u)

. (6.4)
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We focus the loss more near the silhouettes with the weighting function w(u) = 1
D(u)

, decaying
with the distance transform value. This is similar to the importance sampling strategy from recent
works [87, 110] to improve fidelity of the 3D reconstruction or instance segmentation results.

6.3.2 Rendering Implicit 3D Surfaces

To optimize the 3D implicit surfaces from image data, a differentiable rendering function is
required to interpret the continuous 3D feature space. Rendering shape surfaces involves solving
for the pixel-wise depth z that corresponds to the 3D point stemming the appearance at pixel
coordinates u. Assuming perspective camera models, the problem can be defined as

z? = arg min
z≥1

z subject to zū ∈ S . (6.5)

In other words, rendering S requires solving for the zero-crossing of each ray of sight closest to
the camera center. Ray-casting approaches (e.g. sphere tracing [57] and volume rendering [96])
are classical rendering techniques for implicit surfaces in computer graphics, which have also
inspired recent differentiable rendering methods [108, 126, 131, 161] for training neural networks
with image data.

We build our rendering framework upon the differentiable ray-marching algorithm introduced
in Scene Representation Networks (SRN) [161]. At the high level, SRN finds multi-view corre-
spondences implicitly by searching for the terminating 3D point that would result in the most
consistent RGB prediction across different viewpoints. SRN ray-marches each pixel from the
camera center to predict the 3D geometry through a finite series of learnable steps. Starting at
initial depth z(0) for pixel coordinates u, the j-th ray-marching step and the update rule can be
compactly written as

∆z(j) =
∣∣hψ(z(j)ū;η(j)

)∣∣ , (6.6)

z(j+1) ← z(j) + ∆z(j) , j ∈ {0 . . . N − 1} ,

where hψ : R3 → R (parametrized by ψ) consists of an MLP and an LSTM cell [64], and η(j)

summarizes the LSTM states for the j-th step, updated internally within in the LSTM cell. We
take the absolute value on the output to ensure the ray marches away from the camera. The
iterative update on the depth z is repeated N times until the final 3D point z(N)ū is reached.
Differentiable ray-marching can be viewed as a form of learned gradient descent [1] solving
for the problem in (6.5), which has seen recent success in many applications involving bilevel
optimization problems [41, 117, 171].

The ray-marched depth predictions from SRN, however, are view-dependent without guarantee
that the resulting 3D geometry would be truly consistent across viewpoints. This can be problem-
atic especially for untextured regions in the images, potentially leading to ambiguous multi-view
correspondences being associated. By explicitly introducing the shape surface S , we can resolve
for such ambiguity and constrain the final depth prediction z? to fall on S . Therefore, we employ
a second-stage bilevel optimization procedure following the original differentiable ray-marching
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algorithm. We constrain z? to fall within the last two ray-marching steps by encouraging negativity
on the last (N -th) step (modeling a shape interior point) and positivity on the rest (modeling free
space along the ray). If the conditions f(z(N)ū) < 0 and f(z(N−1)ū) > 0 are satisfied, there must
exist z(N−1) < z? < z(N) such that f(z?ū) = 0 from the continuity of the implicit function f .
Fig. 6.2(b) illustrates the above concept. We impose the penalty with margin ε as

Lray(θ,ψ) =
∑

u

N∑
j=0

max
(

0, α(u)·fθ
(
z

(j)
ψ (u)ū

)
+ε
)
, α(u) =

{
1 if u ∈ Xc and j = N

−1 otherwise

(6.7)

by noting that the ray-marched depth values z(j) are dependent on h and thus parametrized by ψ.
We denote Xc as the complement set of X, corresponding to the set of pixels inside the silhouettes.
We also apply importance weighting using the same strategy described in Sec. 6.3.1. Finally, we
solve for z?θ,ψ using the bisection method on fθ, whose unrolled form is trivially differentiable.

The rendered pixel at the image coordinates u can subsequently be expressed as Î(u) =
gφ(z?θ,ψū), where gφ : R3 → R3 (parametrized by φ) predicts the RGB values at the given 3D
location. We optimize the rendered RGB appearance against the given image I with the loss

LRGB(θ,φ,ψ) =
∑

u

∥∥∥Î(u)− I(u)
∥∥∥2

2
=
∑

u

∥∥gφ(z?θ,ψ(u)ū
)
− I(u)

∥∥2

2
, (6.8)

where we write the depth z?θ,ψ(u) as a function of the pixel coordinates u. Ideally, z? should be
dependent only on θ, which parametrizes the surface Sθ = {x ∈ R3 | fθ(x) = 0}; however, the
extra dependency on ψ allows the ray-marching procedure to be much more computationally
efficient as the step sizes are learned. This also poses an advantage over recent approaches based
on classical sphere tracing [108] or volume rendering [126, 131], whose precision of differentiable
rendering directly depends on the number of evaluations called on the implicit functions, making
them inefficient.

Although SRN was originally designed to learn novel view synthesis from multi-view images,
we found it to learn also from single images (in a category-specific setting). We believe this
is because correspondences across individual objects still exist at the semantic level in single-
view training, albeit unavailable at the pixel level. We take advantage of this observation for
SDF-SRN. In our case, the hypernetwork learns implicit features that best explains the object
semantics within the category; in turn, the ray-marching process discovers and associates implicit
semantic correspondences in 3D, such that the ray-marched surfaces are semantically interpretable
across all images. Therefore, shape/depth ambiguities can be resolved by learning to recover
the appearance (with LRGB here), a classical but important cue for disambiguating 3D geometry.
This allows SDF-SRN to learn a strong category-specific object prior, making it trainable even
from single-view images. Recent works have also shown initial success in this regard with 3D
meshes [79] and 3D keypoints [183].
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6.3.3 Implementation

We use an image encoder E as a hypernetwork [54] to predict θ, φ, and ψ (the respective function
parameters of f , g, and h), written as (θ,φ,ψ) = E(I; Φ) where Φ is the neural network weights.
The implicit 3D shape Sθ thus corresponds to the reconstructed 3D shape from image I, which
is learned in an object-centric coordinate system. During optimization, Sθ is transformed to
the camera frame at camera pose (R, t) corresponding to the given image I, rewritten in a
parametrized form as

S ′θ = Sθ(R, t) = {x ∈ R3 | fθ(Rx + t) = 0} . (6.9)

A special property of SDFs is their differentiability with a gradient of unit norm, satisfying
the eikonal equation ‖∇f‖2 = 1 (almost everywhere) [135]. Therefore, we also encourage our
learned implicit 3D representation to satisfy the eikonal property by imposing the penalty

Leik(θ) =
∑

x̃

‖‖∇fθ(x̃)‖2 − 1‖2
2 , (6.10)

where x̃ ∈ R3 is uniformly sampled from the 3D region of interest. Recent works on learning SDF
representations have also sought to incorporate similar regularizations on implicit shapes [49, 76].

To summarize, given a dataset ofD tuples {(I,X,R, t)d}Dd=1 that consists of the RGB images,
2D silhouettes and camera poses, we train the network E end-to-end with the overall objective

Lall(θ,φ,ψ) = λSDFLSDF(θ) + λRGBLRGB(θ,ψ) + λrayLray(θ,φ,ψ) + λeikLeik(θ) (6.11)

by noting that θ, φ, and ψ are predicted by the hypernetwork E(I; Φ).

6.4 Experiments

Architectural details. We use ResNet-18 [59] followed by fully-connected layers as the encoder.
We implement the implicit functions fθ, gφ and hψ as a shared MLP backbone (Fig. 6.3), with f
and g connecting to shallow heads and h taking the backbone feature as the LSTM input (we do
not predict the LSTM parameters with E). The MLP backbone takes a 3D point with positional
encoding [126] as input (also added as intermediate features to the hidden layers), which helps
improve the reconstruction quality. We leave architectural details to the supplementary material.

Training settings. For a fair comparison, we train all networks with the Adam optimizer [85]
with a learning rate of 10−4 and batch size 16. We choose M = 5 points for LSDF and set the
margin ε = 0.01 when training SDF-SRN. Unless otherwise specified, we choose the loss weights
to be λRGB = 1, λSDF = 3, λeik = 0.01; we set λray to be 1 for the last marched point and 0.1
otherwise. For each training iteration, we randomly sample 1024 pixels u from each image for
faster training.
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Figure 6.3: The implicit functions f , g, and h in SDF-SRN share an MLP backbone with the
parameters encoded by E .

Category airplane car chair
accur. cover. accur. cover. accur. cover.

SoftRas [109] 0.250 0.222 0.356 0.302 0.690 0.491
DVR [131] 1.795 0.258 1.538 0.432 1.274 0.699

SDF-SRN (ours) 0.193 0.154 0.141 0.144 0.352 0.315

DVR (w/ depth) 0.320 0.171 0.184 0.181 0.322 0.330

Table 6.1: Quantitative results on multi-view ShapeNet data without viewpoint association from
CAD model correspondences. Note that SDF-SRN even outperforms DVR supervised with depth
from visual hull [131]. All numbers are scaled by 10 (the lower the better).

Evaluation criteria. To convert implicit 3D surfaces S to explicit 3D representations, we
sample SDF values at a voxel grid of resolution 1283 and extract the 0-isosurface with Marching
Cubes [114] to obtain watertight 3D meshes. We evaluate by comparing uniformly sampled
3D points from the mesh predictions to the ground-truth point clouds with the bidirectional
metric of Chamfer distance, measuring different aspects of quality: shape accuracy and surface
coverage [103, 123].

6.4.1 ShapeNet Objects

Datasets. We evaluate our method on the airplane, car, and chair categories from ShapeNet
v2 [16], which consists of 4045, 3533, and 6778 CAD models respectively. We benchmark with
renderings provided by Kato et al. [83], where the 3D CAD models were rendered at 24 uniform
viewpoints to 64 × 64 images. We split the dataset into training/validation/test sets following
Yan et al. [203].
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Figure 6.4: Qualitative results of ShapeNet 3D reconstruction from single-view training on
multi-view data (i.e. no multi-view association is available). Both SoftRas and DVR learns to
fit to the silhouettes but fail to learn reasonable 3D reconstruction from independent images,
showing their reliance on multi-view constraints. SDF-SRN, in contrast, does not suffer from
such limitation and reconstructs 3D objects with high fidelity and successfully recovers the target
shape topologies.

Experimental settings. We consider a category-specific setting and compare against two base-
line methods for learning-based 3D reconstruction without 3D supervision: (a) Differentiable
Volumetric Rendering (DVR) [131], a state-of-the-art method for learning implicit occupancy
functions, and (b) Soft Rasterizer (SoftRas) [109], a state-of-the-art method for learning 3D mesh
reconstruction. We assume known camera poses as with previous works. We also set λSDF = 1
for the airplane category.

Previous works on learning 3D reconstruction from multi-view 2D supervision, including
SoftRas and DVR, have assumed additional known CAD model correspondences, i.e. one knows a
priori which images correspond to the same CAD model. This allows a training strategy of pairing
images with viewpoints selected from the same 3D shape, making the problem more constrained
and much easier to optimize. Practically, however, one rarely encounters the situation where
such viewpoint associations are explicitly provided while also having silhouettes annotated. In
pursuit of an even more practical scenario of 3D-unsupervised learning, we train all models where
all rendered images are treated independently, without the knowledge of multi-view association.
This is equivalent to single-view training on multi-view data, which is more challenging than
“multi-view supervision”, and can also be regarded as an autoencoder setting with additional
camera pose supervision.

Results. We evaluate on the multi-view rendered images and train all airplane and car models
for 100K iterations and all chair models for 200K iterations. The results are reported in Table 6.1
and visualized in Fig. 6.4. SDF-SRN outperforms both baseline methods by a wide margin and
recovers accurate 3D object shapes, despite no explicit information of multi-view association
being available. On the other hand, SoftRas and DVR trained on individual images without such
multi-view constraint do not learn shape regularities within the category and cannot resolve for
shape ambiguities, indicating their high reliance on viewpoint association of the same CAD model.
Furthermore, SDF-SRN even outperforms DVR additionally supervised with depth information
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SoftRas [109] DVR [131] Ours
# CADs accur. cover. accur. cover. accur. cover.

500 0.550 0.508 1.298 0.674 0.475 0.422
1K 0.547 0.551 1.284 0.701 0.442 0.385
2K 0.522 0.481 1.268 0.609 0.423 0.349

4.7K (all) 0.510 0.471 1.367 1.135 0.401 0.329

Table 6.2: Performance analysis of ShapeNet chairs on the amount of CAD models available as
training data under single-view supervision. All numbers are scaled by 10 (the lower the better).

Input SoftRas DVR SDF-SRN (ours) GT

Figure 6.5: SDF-SRN recovers reasonable 3D shapes and topologies even from single-view
supervision, where each instance appears only once in the training set.

extracted from visual hulls [131].

We further analyze the performances under the more practical single-view supervision setting
on single-view data, where only one image (at a random viewpoint) per CAD model is included
in the training set. We choose the chair category and train each model for 50K iterations; since
there are much fewer available training images, we add data augmentation with random color
jittering on the fly to reduce overfitting. Table 6.2 shows that SDF-SRN also outperforms current
3D-unsupervised methods in this challenging setting even trained with scarce data (500 images),
which further improves as more training data becomes available. In addition, SDF-SRN is
able to recover accurate shape topologies (Fig. 6.5) even under this scenario, giving hints to its
applicability to real-world images.

Ablative analysis. We discuss the effects of different components essential to SDF-SRN (under
the multi-view data setup) in Table 6.3. Training with binary cross-entropy (classifying 3D
occupancy) results in a significant drop of performance, which we attribute to the nonlinear nature
of MLPs using discontinuous binary functions as the objective. Table 6.3 also shows the necessity
of differentiable rendering (LRGB) for resolving shape ambiguities (e.g. concavity cannot be
inferred solely from silhouettes), importance weighting for learning finer shapes that aligns more
accurately to silhouettes, and positional encoding of 3D point locations to extract more high-
frequency details from images. We additionally show that if the camera pose were given, one could
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accur. cover.

binary occupancy 0.425 0.790
w/o rendering loss LRGB 0.353 0.554

w/o importance weighting 0.483 1.168
w/o positional encoding 0.444 0.351
full model (SDF-SRN) 0.352 0.315

w/ test-time optimization 0.332 0.303

Table 6.3: Ablation studies of SDF-SRN (conducted on ShapeNet chairs). We additionally
evaluate the performance with test-time optimization on the latent code over the fully trained
networks if the camera poses were known a priori.

optimize the same losses in (6.11) for the latent code over the trained network, further reducing
prediction uncertainties and improving test-time reconstruction performance [103, 137, 161].

6.4.2 Natural Images

Dataset. We demonstrate the efficacy of our method on PASCAL3D+ [197], a 3D reconstruction
benchmarking dataset of real-world images with ground-truth CAD model annotations. We
evaluate on the airplane, car, and chair categories from the ImageNet [31] subset, which consists
of 1965, 5624, and 1053 images respectively. PASCAL3D+ is challenging in at least 3 aspects:
(a) the images are much scarcer than ShapeNet renderings since human annotations of 3D CAD
models is laborious and difficult to scale up; (b) object instances appear only once without
available multi-view observations to associate with; (c) the large variations of textures and lighting
in images makes it more difficult to learn from. We assume weak-perspective camera models and
use the provided 2D bounding boxes to normalize the objects, square-crop the images, and resize
them to 64× 64.

Experimental settings. We compare against DVR [131] as well as Category-specific Mesh
Reconstruction (CMR) [79], which learns 3D mesh reconstruction from static images. Only
RGB images and object silhouettes are available during training; we do not assume any available
pretrained 2.5D/3D shape priors from external 3D datasets [177, 194]. We initialize the meshes in
CMR with a unit sphere; for a fair comparison, we consider CMR using ground-truth camera poses
instead of predicting them from keypoints, which was also reported to yield better performance.
We train each model for 30K iterations, augmenting the dataset with random color jittering and
image rescaling (uniformly between [0.8, 1.2]). We set λRGB = 10 and λeik = 1 for SDF-SRN. We
evaluate quantitatively with shape predictions registered to the ground truth using the Iterative
Closest Point algorithm [11].
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Input CMR DVR SDF-SRN (ours) GT Input CMR DVR SDF-SRN (ours) GT

Figure 6.6: Qualitative results from PASCAL3D+ reconstruction. Compared to the two baseline
methods, SDF-SRN recovers significantly more accurate 3D shapes and topologies from the
images. Both CMR and DVR struggle to associate meaningful shape regularities within category,
while CMR also suffers from topological limitations due to its mesh-based nature, as with SoftRas.

Category airplane car chair
accur. cover. accur. cover. accur. cover.

CMR [79] 0.625 0.803 0.474 0.623 1.396 1.168
DVR [131] 1.483 0.916 1.493 0.795 3.356 2.251

Ours 0.582 0.543 0.391 0.402 0.478 0.398

Table 6.4: Quantitative comparison on PASCAL3D+. All models were trained from scratch
solely on the images and silhouettes, without utilizing 2.5D/3D shape priors pretrained from
external 3D datasets. SDF-SRN consistently outperforms both baseline methods. All numbers are
scaled by 10 (the lower the better).

Results. We present qualitative results in Fig. 6.6. Even though the texture and lighting varia-
tions in PASCAL3D+ makes it more difficult than ShapeNet to associate correspondences across
images, SDF-SRN is able to recover more accurate shapes and topologies from the images com-
pared to the baseline methods. CMR has difficulty learning non-convex shape parts (e.g. plane
wings), while DVR has difficulty learning meaningful shape semantics within category. We note
that SDF-SRN also suffers slightly from shape ambiguity (e.g. sides of cars tend to be concave);
nonetheless, SDF-SRN still outperforms CMR and DVR quantitatively by a wide margin (Ta-
ble 6.4). We also visualize colors and surface normals from the reconstructions rendered at novel
viewpoints (Fig. 6.7), showing that SDF-SRN is able to capture meaningful semantics from singe
images such as object symmetry.

Finally, we note that recent research has shown possible to obtain camera poses from more
practical supervision sources (e.g. 2D keypoints [132, 184]), which could allow learning shape
reconstruction from larger datasets that are much easier to annotate. We leave this to future work.
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Figure 6.7: PASCAL3D+ reconstruction with color and surface normal predictions.

6.5 Conclusion

We have introduced SDF-SRN for learning dense 3D reconstruction from static image collections.
Our framework learns SDF shape representations from distance transformed 2D silhouettes with
improved differentiable rendering. SDF-SRN does not rely on associated multi-view supervision
and learns from single-view images, demonstrating compelling 3D reconstruction results even
on challenging natural images. We believe this is an exciting direction and opens up avenues for
learning 3D reconstruction from larger real-world datasets with more practical supervision.

6.6 Broader Impact

Our proposed framework, SDF-SRN, allows for learning dense 3D geometry of object categories
from real-world images using annotations (i.e. 2D silhouettes) that can be feasibly obtained at a
large scale. Computer vision increasingly needs to perform 3D geometric reasoning from images,
such as when an autonomous vehicle encounters a vehicle in the streets. To avoid catastrophe,
the car must not only detect the existence of the vehicle but also exactly determine its spatial
extent in the 3D world. Similarly, robots and drones are increasingly deployed in unconstrained
environments where they must safely manipulate and avoid 3D objects. Health professionals are
increasingly using computer vision to interpret 2D scans/imagery in 3D. Breakthroughs in dense
geometric reasoning could allow researchers to extract unprecedented detail from visual data.

This work also offers up exciting new opportunities in the area of computer graphics for 3D
content creation, where the laborious process of creating 3D models and animations could be
significantly simplified. This could reduce the time and money costs required for many industrial
applications (e.g. involving virtual reality). We should note that all new technologies have the
potential for misuse, and our framework SDF-SRN is no different. However, we strongly believe
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the myriad of possible societal and economic benefits of our work vastly outweigh such risks.

6.A Derivation of the Proposition

6.A.1 Formal Proof

We provide more detailed derivations of the lower bound b(z; u). For clarity, we briefly restate
the proof outline first before going into the main proof.

For pixel coordinates u on the image plane with distance transform value D(u), the set of 2D
points {v | ‖v−u‖2 ≤ D(u)}within the circle of radiusD(u) centered at u must be exterior to the
2D silhouette. It immediately follows that the set of 3D points {z′v̄ | z′ ≥ 0, ‖v − u‖2 ≤ D(u)}
within the (oblique) cone formed by back-projecting the circle from the camera center must be
free space. For a 3D point zū, the SDF value f(zū) is thus lower-bounded by the radius of the
sphere centered at zū while being inscribed by the cone. Let b(z; u) = ‖zū− z′v̄‖2 be the lower
bound for f(zū), where z′v̄ is the tangent point of the sphere and the conical surface (with v on
the 2D circle back-projected to depth z′). We aim to find b(z; u) by solving the problem

min
v,z′≥0

‖zū− z′v̄‖2
2 subject to ‖v − u‖2 = D(u) . (6.12)

First, by noting u = (ux, uy), we reparametrize v (the set of 2D points on the circle) with θ as

v =

[
ux +D(u) cos θ
uy +D(u) sin θ

]
. (6.13)

The problem in (6.12) thus becomes

min
θ,z′≥0

∥∥∥∥∥∥z
uxuy

1

− z′
ux +D(u) cos θ
uy +D(u) sin θ

1

∥∥∥∥∥∥
2

2

. (6.14)

Without loss of generality, the first-order optimality condition on θ is

0 = 2 ·

z
uxuy

1

− z′
ux +D(u) cos θ
uy +D(u) sin θ

1

>−z′
−D(u) sin θ
D(u) cos θ

0


=

(
z

[
ux
uy

]
− z′

[
ux +D(u) cos θ
uy +D(u) sin θ

])> [− sin θ
cos θ

]
=

(
z

[
ux
uy

]
− z′

[
ux
uy

])> [− sin θ
cos θ

]
=

[
ux
uy

]> [− sin θ
cos θ

]
, (6.15)
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leading to θ = tan−1 uy
ux

and thus

cos θ =
ux
‖u‖2

and sin θ =
uy
‖u‖2

. (6.16)

This indicates the optimality of θ is only dependent on the (normalized) image coordinates u
while being independent of both the given depth z and the variable z′. Plugging (6.16) back
into (6.13) leads to

v =

ux +D(u)
ux
‖u‖2

uy +D(u)
uy
‖u‖2

 =

(
1 +
D(u)

‖u‖2

)
u . (6.17)

Having solved for v, the problem in (6.12) simplifies into

min
z′≥0
‖zū− z′v̄‖2

2 , (6.18)

which is a linear problem with the solution

z′ = z · ū
>v̄

v̄>v̄
. (6.19)

Note that z′ satisfies the non-negativity constraint by nature; one can verify by plugging (6.17)
into (6.19).

Finally, the lower bound thus becomes

b(z; u) = ‖zū− z′v̄‖2 = z ·
∥∥∥∥ū− v̄>ū

v̄>v̄
v̄

∥∥∥∥
2

(6.20)

by noting the expression of v is given in (6.17).

6.A.2 Orthographic cameras

We show that b(z; u) = D(u) under orthographic cameras. Intuitively, one can imagine the camera
center to be pulled away from the image to negative infinity, in which case the back-projected
cone would approach an unbounded cylinder. Correspondingly, the radius of the inscribed sphere
would always be D(u), irrespective of the queried depth z.

The back-projected 3D point (denoted as x) from pixel coordinates u at depth z has a fixed
distance z − 1 to the image plane. Denoting fc as the camera focal length and writing the new
depth as a function of fc, we can rewrite the queried 3D point as

x =
z − 1 + fc

fc

[
u
fc

]
, (6.21)
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which becomes x = zū when fc = 1. Similarly, we can rewrite the tangent point of the cone and
the inscribed sphere

x′ =
z′ − 1 + fc

fc

[
v
fc

]
, (6.22)

which becomes x′ = z′v̄ when fc = 1. The lower bound b(z; u) = ‖x− x′‖2 thus becomes

b(z; u) = ‖x− x′‖2

=

∥∥∥∥z − 1 + fc

fc

[
u
fc

]
− z′ − 1 + fc

fc

[
v
fc

]∥∥∥∥
2

. (6.23)

For orthographic cameras (where fc approaches infinity), taking fc →∞ on (6.23) yields

lim
fc→∞

b(z; u) = lim
fc→∞

∥∥∥∥z − 1 + fc

fc

[
u
fc

]
− z′ − 1 + fc

fc

[
v
fc

]∥∥∥∥
2

= ‖u− v‖2 = D(u) . (6.24)

6.B Dataset

In this section, we provide more details on the datasets used in the experiments.

6.B.1 ShapeNet [16]

The dataset split from Yan et al. [203] were from ShapeNet v1. As nearly half of the CAD models
in the car category were removed in ShapeNet v2, we take the intersection as the final splits
for our experiments. The final statistics of ShapeNet CAD models are reported in Table 6.5.
Following standard protocol, we used the validation set for hyperparameter tuning and the test set
for evaluation.

The ground-truth point clouds provided by Kato et al. [83] were directly sampled from the
ShapeNet CAD models. However, many interior details were also included in a significant portion
of the CAD models, especially the car category (e.g. car seats and steering wheels). Such details
cannot be recovered by 3D-unsupervised 3D reconstruction frameworks, including SoftRas [109],
DVR [131], and the proposed SDF-SRN, as they are limited to reconstructing the outer (visible)
surfaces of objects. Therefore, we use the ground truth provided by Groueix et al. [52], whose
point clouds were created using a virtual mesh scanner from Wang et al. [186]. We re-normalize
the point clouds to match that from Kato et al. [83], tightly fitting a zero-centered unit cube.

When performing on-the-fly data augmentation in the single-view supervision experiments,
we randomly perturb the brightness by [−20%, 20%], contrast by [−20%, 20%], saturation by
[−20%, 20%], and hue uniformly in the entire range. We do not perturb the image scales for
ShapeNet renderings.
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Category train validation test total

airplane 2830 809 405 4044
car 2465 359 690 3514

chair 4744 678 1356 6778

Table 6.5: Dataset statistics of ShapeNet v2
(number of CAD models).

Category train validation total

airplane 991 974 1965
car 2847 2777 5624

chair 539 514 1053

Table 6.6: Dataset statistics of PAS-
CAL3D+ (number of images).

6.B.2 PASCAL3D+ [197]

The PASCAL3D+ dataset is comprised of two subsets from PASCAL VOC [39] and Ima-
geNet [31], labeled with ground-truth CAD models and camera poses. We evaluate on the
ImageNet subset as it exhibits much less object occlusions than the PASCAL VOC subset. We
note that occlusion handling is still an open problem to all methods (including the proposed SDF-
SRN) since appropriate normalization of object scales is required to learn meaningful semantics
within category. The statistics of PASCAL3D+ used in the experiments are reported in Table 6.6.

Since the natural images from PASCAL3D+ come in different image and object sizes, we
rescale by utilizing the (tightest) 2D bounding boxes. In particular, we center the object and
rescale such that 1.2 times the longer side of the bounding box fits the canonical images (with a
resolution of 64×64); for the car category, we rescale such that the height of the bounding box fits
1/3 of the canonical image height. When performing on-the-fly data augmentation, we randomly
perturb the brightness by [−20%, 20%], contrast by [−20%, 20%], saturation by [−20%, 20%],
and hue uniformly in the entire range. We additionally perturb the image scale by [−20%, 20%].

We use the ground-truth CAD model and camera pose associated with each image to create the
object silhouettes. For evaluation, we create ground-truth point clouds from the 3D CAD models
using the virtual mesh scanner from Wang et al. [186] (described in Sec. 6.B.1) and rescale by

s =
camera focal length

camera distance
· 2

64
, (6.25)

which scales the point clouds to match the [−1, 1] canonical image space where the silhouettes lie.
Note that the camera parameters provided from the dataset are used only for evaluation. Since
there may still exist misalignment mainly due to depth ambiguity, we run the rigid version of the
Iterative Closest Point algorithm [11] for 50 iterations to register the prediction to the rescaled
ground truth.

6.C Architectural and Training Details

We provide a more detailed description of the network architectures of SDF-SRN. As described,
the implicit functions fθ, gφ and hψ share an MLP backbone extracting point-wise deep features
for each 3D point. The shared MLP backbone consists of 4 linear layers with 128 hidden units,
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with layer normalization [8] and ReLU activations in between. The shallow heads of f and g are
single linear layers, predicting the SDF and RGB values respectively. The encoder E is built with
a ResNet-18 [59] followed by fully-connected layers, which consists of six 512-unit hidden layers
for the ShapeNet [16] experiments and two 256-unit hidden layers for the PASCAL3D+ [197]
experiments. We use separate branches of fully-connected layers to predict the weights and biases
of each linear layer of the implicit function, i.e. the latent code (from the encoder) is passed to 4
sets of fully-connected layers for the 4 linear layers of the MLP backbone, and similarly for the
shallow heads. We choose the hidden and output state dimension for the LSTM to be 32 and add
a following linear layer to predict the update step for the depth δz.

Following prior practice [79, 131], we initialize ResNet-18 with weights pretrained with
ImageNet [31]. To make the training of SDF-SRN better conditioned, we also pretrain the fully-
connected part of the hypernetwork to initially predict an SDF space of a zero-centered sphere
with radius r. In practice, we randomly sample z̃ ∼ N (0, I) on the hidden latent space to predict
the weights θ̃ of an implicit function fθ̃. Subsequently, we uniformly sample x̃ ∈ R3 in the 3D
space and minimize the loss

Lpretrain =
∑

x̃

∥∥∥fθ̃(x̃)−
(
‖x̃‖2 − r

)∥∥∥2

2
. (6.26)

We choose radius r = 0.5 and pretrain the fully-connected layers randomly sampling 10K points
for 2000 iterations. We find this pretraining step important for facilitating convergence at the early
stage of training and avoiding degenerate solutions.

To encourage high-frequency components to be recovered in the 3D shapes, we take advantage
of the positional encoding technique advocated by Mildenhall et al. [126]. For each input 3D
point x of the implicit functions f , g, and h, we map x to higher dimensions with the function

γ(p) =
[
p, cos(20p), sin(20p), . . . , cos(2L−1p), sin(2L−1p)

]
, (6.27)

where p is applied to all 3D coordinates of x = (x, y, z) and subsequently concatenated. We
choose L = 6 in our implementation.

6.D Additional Results

We visualize additional qualitative comparisons for the ShapeNet [16] multi-view supervision
experiment in Fig. 6.8 for airplanes, Fig. 6.9 for cars, and Fig. 6.10 for chairs. We again
emphasize that these results are from unknown multi-view associations, where each image is
treated independently during training. SDF-SRN is able to consistently capture meaningful shape
semantics within category, while SoftRas [109] and DVR [131] suffer from the lack of viewpoint
correspondences. In addition, SDF-SRN can successfully capture various shape topologies that
underlies in the images. We also provide additional results of SDF-SRN on natural images
(PASCAL3D+ [197]) in Fig. 6.11 for airplanes, Fig. 6.12 for cars, and Fig. 6.13 for chairs.

99
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Figure 6.8: Additional results on ShapeNet airplanes.

Input SoftRas DVR GT Input SoftRas DVR GTSDF-SRN (ours) SDF-SRN (ours)

Figure 6.9: Additional results on ShapeNet cars.
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Figure 6.10: Additional results on ShapeNet chairs.

Input SDF-SRN (ours) GT Input SDF-SRN (ours) GT

Figure 6.11: Additional results on PASCAL3D+ airplanes.
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Figure 6.12: Additional results on PASCAL3D+ cars.

Input SDF-SRN (ours) GT Input SDF-SRN (ours) GT

Figure 6.13: Additional results on PASCAL3D+ chairs.
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Part III

3D Registration & Reconstruction
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Chapter 7

Photometric Optimization for 3D Shape
Alignment to Videos

7.1 Introduction

The choice of 3D representation plays a crucial role in 3D reconstruction problems from 2D
images. Classical multi-view geometric methods, most notably structure from motion (Sf M)
and SLAM, recover point clouds as the underlying 3D structure of RGB sequences, often with
very high accuracy [36, 128]. Point clouds, however, lack inherent 3D spatial structure that is
essential for efficient reasoning. In many scenarios, mesh representations are more desirable –
they are significantly more compact since they have inherent geometric structures defined by point
connectivity, while they also represent continuous surfaces necessary for many applications such
as robotics (e.g. accurate localization for autonomous driving), computer graphics (e.g. physical
simulation, texture synthesis), and virtual/augmented reality.

Another drawback of classical multi-view geometric methods is reliance on hand-designed
features and can be fragile when their assumptions are violated. This happens especially in
textureless regions or when there are changes in illumination. Data-driven approaches [21, 52],
on the other hand, learn priors to tackle ill-posed 3D reconstruction problems and have recently
been widely applied to 3D prediction tasks from single images. However, they can only reliably
reconstruct from the space of training examples it learns from, resulting in limited ability to
generalize to unseen data.

In this chapter, we address the problem of 3D mesh reconstruction from image sequences by
bringing together the best attributes of multi-view geometric methods and data-driven approaches
(Fig. 7.1). Focusing on object instances, we use shape priors (specifically, neural networks) to
reconstruct geometry with incomplete observations as well as multi-view geometric constraints
to refine mesh predictions on the input sequences. Our approach allows dense reconstruction
with object semantics from learned priors, which is not possible from the traditional pipelines
of surface meshing [84] from multi-view stereo (MVS). Moreover, our approach generalizes to
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Figure 7.1: Our video-aligned object mesh reconstruction enforcing multi-view consistency while
constraining shape deformations with shape priors, generating an output mesh with improved
geometry with respect to the input views.

unseen objects by utilizing multi-view geometry to enforce consistency across viewpoints.

Given only RGB information, we achieve mesh reconstruction from image sequences by
photometric optimization, which we pose as a piecewise image alignment problem of individual
mesh faces. To avoid degeneracy, we introduce a novel virtual viewpoint rasterization to compute
photometric gradients with respect to mesh vertices for 3D alignment, allowing the mesh to
deform to the observed shape. A main advantage of our photometric mesh optimization is its
non-reliance on any a-priori known depth or mask information [79, 177, 203] — a necessary
condition to be able to reconstruct objects from real-world images. With this, we take a step
toward practical usage of prior-based 3D mesh reconstruction aligned with RGB sequences.

In summary, we present the following contributions:

• We incorporate multi-view photometric consistency with data-driven shape priors for
optimizing 3D meshes using 2D photometric cues.

• We propose a novel photometric optimization formulation for meshes and introduce a
virtual viewpoint rasterization step to avoid gradient degeneracy.

Finally, we show 3D object mesh reconstruction results from both synthetic and real-world
sequences, unachievable with either naïve mesh generators or traditional MVS pipelines without
heavy manual post-processing.
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7.2 Related Work

Our work on object mesh reconstruction touches several areas, including multi-view object
reconstruction, mesh optimization, deep shape priors, and image alignment.

Multi-view object reconstruction. Multi-view calibration and reconstruction is a well-studied
problem. Most approaches begin by estimating camera coordinates using 2D keypoint matching,
a process known as SLAM [36, 127] or SfM [42, 153], followed by dense reconstruction methods
such as MVS [43] and meshing [84]. More recent works using deep learning have explored 3D
reconstruction from multiple-view consistency between various forms of 2D observations [101,
177, 178, 203, 222]. These methods all utilize forms of 2D supervision that are easier to acquire
than 3D CAD models, which are relatively limited in quantity. Our approach uses both geometric
and image-based constraints, which allows it to overcome common multi-view limitations such as
missing observations and textureless regions.

Mesh optimization. Mesh optimization dates back to classical works of Active Shape Mod-
els [22] and Active Appearance Models [23, 120], which uses 2D meshes to fit facial landmarks.
In this work, we optimize for 3D meshes using 2D photometric cues, a significantly more challeng-
ing problem due to the inherent ambiguities in the task. Similar approaches for mesh refinement
have also been explored [29, 30]; however, a sufficiently good initialization is required with very
small vertex perturbations allowed. As we show in our experiments, we are able to handle larger
amount of noise perturbation by optimizing over a latent shape code instead of mesh vertices,
making it more suitable for practical uses.

Several recent methods have addressed learning 3D reconstruction with mesh representations.
AtlasNet [52] and Pixel2Mesh [185] are examples of learning mesh object reconstructions from 3D
CAD models. Meanwhile, Neural Mesh Renderer [83] suggested a method of mesh reconstruction
via approximate gradients for 2D mask optimization, and Kanazawa et al. [79] further advocated
learning mesh reconstruction from 2D supervision of textures, masks, and 2D keypoints. Our
approach, in contrast, does not assume any availability of masks or keypoints and operates purely
via photometric cues across viewpoints.

Shape priors. The use of neural networks as object priors for reconstruction has recently been
explored with point clouds [223]. However, it requires object masks as additional constraints
during optimization. We eliminate the need for mask supervision by regularizing the latent code.
Shape priors have also been explored for finding shape correspondences [51], where the network
learns the deformation field from a template shape to match 3D observations. In our method, we
directly optimize the latent shape code to match 2D cues from multiple viewpoints and do not
require a known shape template for the object. A plane and primitive prior has been used for the
challenging task of multi-view scene reconstruction [68]. Although the primitive prior does not
need to be learned from an object dataset, the resulting reconstruction can differ significantly from
the target geometry when it is not well represented by the chosen primitives.
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Figure 7.2: Overview. We perform 3D mesh reconstruction via piecewise image alignment of
triangles to achieve per-triangle visibility-aware photometric consistency across multiple views,
with mesh vertices optimized over the latent code of a shape prior learned by deep neural networks.

Image alignment. The most generic form of image alignment refers to prediction of inherent
geometric misalignment between a pair of images. Image alignment using simple warping
functions can be dated back to the seminal Lucas-Kanade algorithm [116] and its recent variants [9,
100]. Recent work has also explored learning a warp function to align images from neural networks
for applications such as novel view synthesis [216, 217] and learning invariant representations [71,
99]. In this chapter, we pose our problem of mesh optimization as multiple image alignment
problems of mesh faces, and solve it by optimizing over a latent code from a deep network rather
than the vertices themselves.

7.3 Approach

We seek to reconstruct a 3D object mesh from an RGB sequence {(If ,Ωf )}, where each frame If
is associated with a camera matrix Ωf . In this chapter, we assume that the camera matrices {Ωf}
can be readily obtained from off-the-shelf Sf M methods [153]. Fig. 7.2 provides an overview –
we optimize for object meshes that maximize multi-view photometric consistency over a shape
prior, where we use a pretrained mesh generator. We focus on triangular meshes here although
our method is applicable to any mesh type.
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7.3.1 Mesh Optimization over Shape Prior

Direct optimization on a 3D meshM with N vertices involves solving for 3N degrees of freedom
(DoFs) and typically becomes underconstrained when N is large. Therefore, reducing the allowed
DoFs is crucial to ensure mesh deformations are well-behaved during optimization. We wish to
represent the meshM = G(z) as a differentiable function G of a vector representation z.

We propose to use an off-the-shelf generative neural network as the main part of G and
reparameterize the mesh with an associated latent code z ∈ RK , where K � 3N . The network
serves as an object shape prior whose efficacy comes from pretraining on external shape datasets.
Shape priors over point clouds have been previously explored [223]; here, we extend to mesh
representations. We use AtlasNet [52] here although other mesh generators are also applicable.
The shape prior allows the predicted 3D mesh to deform within a learned shape space, avoiding
many local minima that exist with direct vertex optimization. To utilize RGB information from
the given sequence for photometric optimization, we further add a 3D similarity transform to map
the generated mesh to world cameras recovered by Sf M (see Sec. 7.3.4).

We define our optimization problem as follows: given the RGB image sequence and cameras
{(If ,Ωf )}, we optimize a regularized cost consisting of a photometric loss Lphoto for all pairs of
frames over the representation z, formulated as

min
z

∑
a6=b

Lphoto(Ia, Ib,Ωa,Ωb; G(z)) + Lreg(z) , (7.1)

where Lreg is a regularization term on z. This objective allows the generated mesh to deform with
respect to an effective shape prior. We describe each term in detail next.

7.3.2 Piecewise Image Alignment

Optimizing the meshM with the photometric loss Lphoto is based on the assumption that a dense
2D projection of the individual triangular faces of a 3D mesh should be globally consistent across
multiple viewpoints. We cast the problem of 3D mesh alignment to the input views as a collection
of piecewise 2D image alignment subproblems of each projected triangular face (Fig. 7.2).

To perform piecewise 2D image alignment between Ia and Ib, we need to establish pixel
correspondences. We first denote Vj(z) ∈ R3×3 as the 3D vertices of triangle j in mesh
M = G(z), defined as column vectors. From triangle j, we can sample a collection of 3D points
Pj = {pi(z)} that lie within triangle j, related via pi(z) = Vj(z)αi through the barycentric
coordinates αi. For a camera Ω, let π : R3 → R2 be the projection function mapping a world 3D
point pi(z) to 2D image coordinates. The pixel intensity error between the two views Ωa and Ωb

can be compared at the 2D image coordinates corresponding to the projected sampled 3D points.
We formulate the photometric loss Lphoto as the sum of `1 distances between pixel intensities at
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Figure 7.3: Visualization of the photometric loss Lphoto between the synthesized appearances
at virtual viewpoints ΩV starting from input images Ia and Ib. The photometric loss Lphoto

encourages consistent appearance syntheses from both input viewpoints Ωa and Ωb.

these 2D image coordinates over all triangular faces,

Lphoto(Ia, Ib,Ωa,Ωb; G(z)) (7.2)

=
∑
j

∑
i:pi∈Pj

‖Ia (π(pi(z); Ωa))− Ib (π(pi(z); Ωb))‖1 .

As such, we can optimize the photometric loss Lphoto with pixel correspondences established as a
function of z.

Visibility. As a 3D point pi may not be visible in a given view due to possible object self-
occlusion, we handle visibility by constraining Pj to be the set of samples in triangle j whose
projection is visible in both views. We achieve this by returning a mesh index map using
mesh rasterization, a standard operation in computer graphics, for each optimization step. The
photometric gradients of each sampled point ∂I

∂Vj
= ∂I

∂xi

∂xi

∂pi

∂pi

∂Vj
in turn backpropagate to the

vertices Vj . We obtain ∂I
∂xi

through differentiable image sampling [71], ∂xi

∂pi
by taking the derivative

of the projection π, and ∂pi

∂Vj
by associating with the barycentric coordinates αi. We note that the

entire process is differentiable and does not resort to approximate gradients [83].

7.3.3 Virtual Viewpoint Rasterization

We can efficiently sample a large number of 3D points Pj in triangle j by rendering the depth
of M from a given view using mesh rasterization (Sec. 7.3.2). If the depth were rasterized
from either input view Ωa or Ωb, however, we would obtain zero photometric gradients. This
degeneracy arises due to the fact that ray-casting from one view and projecting back to the same
view results in ∂I

∂Vj
= 0.
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To elaborate, we first note that depth rasterization of triangle j is equivalent to back-projecting
regular grid coordinates x̄i to triangle j. We can express each depth point from camera Ω ∈
{Ωa,Ωb} as pi(z) = π−1(x̄i; Vj(z),Ω), where π−1 : R2 → R3 is the inverse projection function
realized by solving for ray-triangle intersection with Vj(z). Combining with the projection
equation, we have

xi(z,Ω) = π(π−1(x̄i; Vj(z),Ω); Ω) = x̄i ∀x̄i , (7.3)

becoming the identity mapping and losing the dependency of xi on Vj(z), which in turn leads to
∂xi

∂Vj
= 0. This insight is in line with the recent observation from Ham et al. [55].

To overcome this degeneracy, we rasterize the depth from a third virtual viewpoint ΩV /∈
{Ωa,Ωb}. This step allows correct gradients to be computed in both viewpoints Ωa and Ωb,
which is essential to maintain stability during optimization. We can form the photometric loss
by synthesizing the image appearance at ΩV using the pixel intensities from both Ωa and Ωb

(Fig. 7.3). We note that ΩV can be arbitrarily chosen. In practice, we choose ΩV to be the bisection
between Ωa and Ωb by applying Slerp [156] on the rotation quaternions and averaging the two
camera centers.

7.3.4 Implementation Details

Coordinate systems. Mesh predictions from a generative network typically lie in a canonical
coordinate system [52, 185] independent of the world cameras recovered by Sf M. Therefore, we
need to account for an additional 3D similarity transform T (·) applied to the mesh vertices. For
each 3D vertex v′k from the prediction, we define the similarity transform as

vk = T (v′k;θ) = exp(s) ·R(ω)v′k + t ∀k , (7.4)

where θ = [s;ω; t] ∈ R7 are the parameters and R is a 3D rotation matrix parameterized with
the so(3) Lie algebra. We optimize for z = [z′;θ] together, where z′ is the latent code associated
with the generative network.

Since automated registration of noisy 3D data with unknown scales is still an open problem, we
assume a coarse alignment of the coordinate systems can be computed from minimal annotation
of rough correspondences (see Sec. 7.4.3 for details). We optimize for the similarity transform to
more accurately align the meshes to the RGB sequences.

Regularization. Despite neural networks being effective priors, the latent space is only spanned
by the training data. To avoid meshes from reaching a degenerate solution, we impose an extra
penalty on the latent code z′ to ensure it stays within a trust region of the initial code z0 (extracted
from a pretrained image encoder), defined as Lcode = ‖z′ − z0‖2

2. We also add a scale penalty
Lscale = −s that encourages the mesh to expand, since the mesh shrinking to infinitesimal is a
trivial solution with zero photometric error. The regularization Lreg in cost (7.1) is written as

Lreg(z) = λcode · Lcode(z
′) + λscale · Lscale(θ) (7.5)
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Figure 7.4: Sample sequences composited from ShapeNet renderings (top: car, bottom: airplane)
and SUN360 scenes.

where λcode and λscale are the penalty weights.

7.4 Experiments

We evaluate the performance of our method on a single (Sec. 7.4.1) and multiple (Sec. 7.4.2)
object categories with synthetic data as well as real-world videos (Sec. 7.4.3).

Data preparation. We create datasets of 3D CAD model renderings for training a mesh genera-
tion network and evaluating our optimization framework. Our rendering pipeline aims to create
realistic images with complex backgrounds so they could be applied to real-world video sequences.
We use ShapeNet [16] for the object dataset and normalize all objects to fit an origin-centered unit
sphere. We render RGB images of each object using perspective cameras at 24 equally spaced
azimuth angles and 3 elevation angles.

To simulate realistic backgrounds, we randomly warp and crop spherical images from the
SUN360 database [198] to create background images of the same scene taken at different camera
viewpoints. By compositing the foreground and background images together at corresponding
camera poses, we obtain RGB sequences of objects composited on realistic textured backgrounds
(Fig. 7.4). Note that we do not keep any mask information that was accessible in the rendering
and compositing process as such information is typically not available in real-world examples.
All images are rendered/cropped at a resolution of 224×224.

Shape prior. We use AtlasNet [52] as the base network architecture for mesh generation, which
we retrain on our new dataset. We use the same 80%-20% training/test split from Groueix et
al. [52] and additionally split the SUN360 spherical images with the same ratio. During training,
we augment background images at random azimuth angles.

112



RGB sequence
AtlasNet
(single)

AtlasNet
(mean code)

AtlasNet
(mean vertices) Ours RGB sequence

AtlasNet
(single)

AtlasNet
(mean code)

AtlasNet
(mean vertices) Ours

Figure 7.5: Qualitative results from category-specific models, where we visualize two sample
frames from each test sequence. Our method better aligns initial meshes to the RGB sequences
while optimizing for more subtle shape details (e.g. car spoilers and airplane wings) over baselines.
The meshes are color-coded by surface normals with occlusion boundaries drawn.

Initialization. We initialize the code z0 by encoding an RGB frame with the AtlasNet encoder.
For ShapeNet sequences, we choose frames with objects facing 45° sideways. For real-world
sequences, we manually select frames where objects are center-aligned to the images as much
as possible to match our rendering settings. We initialize the similarity transform parameters to
θ = 0 (identity transform).

Evaluation criteria. We evaluate the result by measuring the 3D distances between the sampled
3D points from the predicted meshes and the ground-truth point clouds [52]. We follow Lin et
al. [101] by reporting the 3D error between the predicted and ground-truth point clouds as
η(S1,S2) =

∑
i:vi∈S1 minvj∈S2 ‖vi − vj‖2 for some source and target point sets S1 and S2,

respectively. This metric measures the prediction shape accuracy when S1 is the prediction and S2

is the ground truth, while it indicates the prediction shape coverage when vice versa. We report
quantitative results in both directions separately averaged across all instances.

7.4.1 Single Object Category

We start by evaluating our mesh alignment in a category-specific setting. We select the car,
chair, and plane categories from ShapeNet, consisting of 703, 1356, and 809 objects in our test
split, respectively. For each object, we create an RGB sequence by overlaying its rendering
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Figure 7.6: Mesh visualization with textures computed by averaging projections across all
viewpoints. Our method successfully reduces variance and recovers dense textures that can be
embedded on the surfaces.

onto a randomly paired SUN360 scene with the cameras in correspondence. We retrain each
category-specific AtlasNet model on our new dataset using the default settings for 500 epochs.
During optimization, we use the Adam optimizer [85] with a constant learning rate of 0.003 for
100 iterations. We manually set the penalty factors to be λcode = 0.05 and λscale = 0.02.

One challenge is that the coordinate system for a mesh generated by AtlasNet is independent
of the recovered world cameras {Ωf} for a real-world sequence. Determining such coordinate
system mapping (defined by a 3D similarity transform) is required to relate the predicted mesh to
the world. On the other hand, for the synthetic sequences, we know the exact mapping as we can
render the views for AtlasNet and the input views {If} in the same coordinate system.

For our first experiment, we simulate the possibly incorrect mapping estimates by perturbing
the ground-truth 3D similarity transform by adding Gaussian noise ε ∼ N (0, σI) to its parameters,
pre-generated per sequence for evaluation. We evaluate the 3D error metrics under such perturba-
tions. Note that our method utilizes no additional information other than the RGB information
from the given sequences.

We compare our mesh reconstruction approach against three baseline variants of AtlasNet: (a)
mesh generations from a single-image feed-forward initialization, (b) generation from the mean
latent code averaged over all frames in the sequence, and (c) the mean shape where vertices are
averaged from the mesh generation across all frames.

We show qualitative results in Fig. 7.5 (compared under perturbation σ = 0.12). Our method
is able to take advantage of multi-view geometry to resolve large misalignments and optimize
for more accurate shapes. The high photometric error from the background between views
discourages mesh vertices from staying in such regions. This error serves as a natural force
to constrain the mesh within the desired 3D regions, eliminating the need of depth or mask
constraints during optimization. We further visualize our mesh reconstruction with textures that
are estimated from all images (Fig. 7.6). Note that the fidelity of mean textures increases while
variance in textures decrease after optimization.

We evaluate quantitatively in Fig. 7.7, where we plot the average 3D error over mapping
noise. This result demonstrates how our method handles inaccurate coordinate system mappings
to successfully match the meshes against RGB sequences. We also ablate optimizing the latent
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Figure 7.7: Category-specific performance to noise in coordinate system mapping. Our method is
able to resolve for various extents of mesh misalignments from the sequence.

code z, showing that allowing shape deformation improves reconstruction quality over a sole 3D
similarity transform (“fixed code” in Fig. 7.7). Note that our method is slightly worse in shape
coverage error (GT→pred.) when evaluated at the ground-truth mapping. This result is attributed
to the limitation of photometric optimization that opts for degenerate solutions when objects are
insufficiently textured.
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Category plane bench cabin. car chair monit. lamp speak. fire. couch table cell. water. mean

AtlasNet (single) 3.872 4.931 5.708 4.269 4.869 4.687 8.684 7.245 3.864 5.017 4.964 4.571 4.290 5.152
AtlasNet (mean code) 3.746 4.496 5.600 4.286 4.571 4.634 7.366 6.976 3.632 4.798 4.903 4.286 3.860 4.858
AtlasNet (mean shape) 3.659 4.412 5.382 4.192 4.499 4.424 7.200 6.683 3.547 4.606 4.860 4.196 3.742 4.723
Ours 0.704 1.821 2.850 0.597 1.441 1.115 8.855 3.430 1.255 0.983 1.725 1.599 1.743 2.163

(a) 3D error: prediction→ ground truth (shape accuracy).
Category plane bench cabin. car chair monit. lamp speak. fire. couch table cell. water. mean

AtlasNet (single) 4.430 4.895 5.024 4.461 4.896 4.640 8.906 6.994 4.407 4.613 5.350 4.254 4.263 5.164
AtlasNet (mean code) 4.177 4.507 4.962 4.384 4.635 4.143 7.292 6.990 4.307 4.463 5.084 4.036 3.718 4.823
AtlasNet (mean shape) 4.464 4.915 5.150 4.521 4.940 4.560 8.159 7.308 4.528 4.707 5.255 4.299 4.183 5.153
Ours 2.237 3.215 1.927 0.734 2.377 2.119 10.764 4.152 2.583 1.735 6.126 1.851 2.926 3.288

(b) 3D error: ground truth→ prediction (shape coverage).

Table 7.1: Average 3D test error for general object categories (numbers scaled by 103). The mean
is taken across categories. Our optimization method is effective on most object categories. Note
that our method improves on accuracy of the table category despite worsening in shape coverage
due to insufficient textures in object samples.

7.4.2 Multiple Object Categories

We extend beyond a model that reconstructs a single object category by training a single model
to reconstruct multiple object categories. We take 13 commonly chosen CAD model categories
from ShapeNet [21, 40, 52, 101]. We follow the same settings as in Sec. 7.4.1 except we retrain
AtlasNet longer for 1000 epochs due to a larger training set.

We show visual results in Fig. 7.8 on the efficacy of our method for multiple object categories
(under perturbation σ = 0.12). Our results show how we can reconstruct a shape that better
matches our RGB observations (e.g., refining hollow regions, as in the bench backs and table
legs). We also show category-wise quantitative results in Table 7.1, compared under perturbation
noise σ = 0.06. We find photometric optimization to perform effectively across most categories
except lamps, which consist of many examples where optimizing for thin structures is hard for
photometric loss.

7.4.3 Real-world Videos

Finally, we demonstrate the efficacy of our method on challenging real-world video sequences
orbiting an object. We use a dataset of RGB-D object scans [20], where we use the chair model to
evaluate on the chair category. We select the subset of video sequences that are 3D-reconstructible
using traditional pipelines [153] and where Sf M extracts at least 20 reliable frames and 100 salient
3D points. We retain 82 sequences with sufficient quality for evaluation. We rescale the sequences
to 240× 320 and skip every 10 frames.

We compute the camera extrinsic and intrinsic matrices using off-the-shelf Sf M with COLMAP [153].
For evaluation, we additionally compute a rough estimate of the coordinate system mapping by
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Figure 7.11: Metric-scale depth error before and after
optimization (with Sf M world cameras rescaled).

Dist. Initial. Optim.

1 6.504 4.990
2 9.064 6.979
3 10.984 8.528
4 12.479 9.788
6 14.718 11.665

Table 7.2: Average pixel reprojection
error (scaled by 100) from real-world
videos as a function of frame distances.

annotating 3 corresponding points between the predicted mesh and the sparse points extracted
from Sf M (Fig. 7.9), which allows us to fit a 3D similarity transform. We optimize using Adam
with a learning rate of 2e-3 for 200 iterations, and we manually set the penalty factors to be
λcode = 0.05 and λscale = 0.01.

We demonstrate how our method is applicable to real-world datasets in Fig. 7.10. Our method
is able to refine shapes such as armrests and office chair legs. Note that our method is sensitive to
the quality of mesh initialization from real images, mainly due to the domain mismatch between
synthetic and real data during the training/test phases of the shape prior. Despite this, it is
still able to straighten and align to the desired 3D location. In addition, we report the average
pixel reprojection error in Table 7.2 and metric depth error in Fig. 7.11 to quantify the effect of
photometric optimization, which shows further improvement over coarse initializations.

Finally, we note that surface reconstruction is a challenging post-processing procedure for
traditional pipelines. Fig. 7.10 shows sample results for Sf M [153], PatchMatch Stereo [12],
stereo fusion, and Poisson mesh reconstruction [84] from COLMAP [153]. In addition to the need
of accurate object segmentation, the dense meshing problem with traditional pipelines typically
yields noisy results without laborious manual post-processing.

7.5 Conclusion

We have demonstrated a method for reconstructing a 3D mesh from an RGB video by combining
data-driven deep shape priors with multi-view photometric consistency optimization. We also show
that mesh rasterization from a virtual viewpoint is critical for avoiding degenerate photometric
gradients during optimization. We believe our photometric mesh optimization technique has merit
for a number of practical applications. It enables the ability to generate more accurate models of
real-world objects for computer graphics and potentially allows automated object segmentation
from video data. It could also benefit 3D localization for robot navigation and autonomous driving,
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where accurate object location, orientation, and shape from real-world cameras is crucial for more
efficient understanding.

7.A Appendix

7.A.1 Architectural and Pretraining Details

We use AtlasNet [52] as the base network architecture for our experiments. Following Groueix et
al. [52], the image encoder is the ResNet-18 [59] architecture where the last fully-connected layer
is replaced with one with an output dimension of 1024, which is the size of the latent code. We
use the 25-patch version of the AtlasNet mesh decoder, where each deformable patch is an open
triangular mesh with 52 × 2 = 50 triangles on a 5 × 5 regular grid. We redirect the readers to
Groueix et al. [52] for more details.

In the stage of pretraining AtlasNet on ShapeNet [16] with textured background from
SUN360 [198], we train all networks using the Adam optimizer [85] with a constant learn-
ing rate of 10−4. We set the batch size for all experiments to be 32. We initialize the AtlasNet
encoder with the pretrained ResNet-18 on ImageNet [152] except for the last modified layer
(before the latent code), and we initialize the decoder with that pretrained from a point cloud
autoencoder from Groueix et al. [52].

7.A.2 Warp Parameterization Details

We parameterize the rotation component of 3D similarity transformations with the so(3) Lie
algebra. Given a warp parameter vector ω = [ω1, ω2, ω3]> ∈ so(3), the rotation matrix R(ω) ∈
SO(3) can be written as

R(ω) = exp

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (7.6)

where exp is the exponential map (i.e. matrix exponential). R is the identity transformation when
ω is an all-zeros vector. The exponential map is Taylor-expandable as

R(ω) = exp(ω×) = lim
K→∞

K∑
k=0

ωk×
k!

. (7.7)

We implement the so(3) parameterization using the Taylor approximation expression withK = 20.
We have also tried parametrizing the 3D similarity transformations with the self-contained Lie
group Sim(3), where the scale is incorporated into the exponential map; we find it to yield almost
identical results. We also take the exponential on the scale s to ensure positivityl; the resulting
scale does not change when s = 0.
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7.A.3 SUN360 Background Data Generation

The background images from SUN360 [198] are cropped from spherical images with a resolution
of 1024×512, using a field of view of 90°. Fig. 7.12 illustrates an example of the original spherical
image and its generated crops.
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Figure 7.8: Qualitative results for general object categories. Our optimization method recovers
subtle details such as back of benches, watercraft sails, and even starts to reveal cabinet open
spaces which were initially occluded. Our method tends to fail more frequently with textureless
objects (e.g. cellphone and firearm).
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(a) (b) (c) (d)

Figure 7.9: We select 3 correspondences between (a) the mesh vertices and (b) the Sf M points
to find (c) an estimated coordinate system mapping by fitting a 3D similarity transform. (d)
Alignment result after our photometric optimization.

RGB sequence AtlasNet (init.) Ours RGB sequence AtlasNet (init.) OursTraditional pipeline Traditional pipeline

Figure 7.10: Qualitative results on real-world sequences. Given an initialization, our method
accurately aligns a generated mesh to an RGB video. Even when the initial mesh is an inaccurate
prediction of the real object, our method is still able to align the semantic parts (bottom left).
We show failure cases in the last two examples in the bottom right, where there is insufficient
background texture as photometric cues and where the initial mesh is insufficient to capture the
thin structures. We also show the result of a traditional reconstruction pipeline [153] after manual
cleanup. Due to the difficulty of the problem these meshes still often have undesirable artifacts.
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Figure 7.12: (a) Example panoramic (spherical) image and (b) sample cropped images at different
camera viewpoints.
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Chapter 8

Beyond Shape Priors: Bundle-Adjusting
Neural Radiance Fields

8.1 Introduction

Humans have strong capabilities of reasoning about 3D geometry through our vision from the
slightest ego-motion. When watching movies, we can immediately infer the 3D spatial structures
of objects and scenes inside the videos. This is because we have an inherent ability of associating
spatial correspondences of the same scene across continuous observations, without having to
make sense of the relative camera or ego-motion. Through pure visual perception, not only can
we recover a mental 3D representation of what we are looking at, but meanwhile we can also
recognize where we are looking at the scene from.

Simultaneously solving for the 3D scene representation from RGB images (i.e. reconstruc-
tion) and localizing the given camera frames (i.e. registration) is a long-standing chicken-and-egg
problem in computer vision — recovering the 3D structure requires observations with known cam-
era poses, while localizing the cameras requires reliable correspondences from the reconstruction.
Classical methods such as structure from motion (Sf M) [58, 153] or SLAM [36, 127] approach
this problem through local registration followed by global geometric bundle adjustment (BA) on
both the structure and cameras. Sf M and SLAM systems, however, are sensitive to the quality of
local registration and easily fall into suboptimal solutions. In addition, the sparse nature of output
3D point clouds (often noisy) limits downstream tasks that requires dense geometric reasoning.

Closely related to 3D reconstruction from imagery is the problem of view synthesis. Though
not primarily purposed for recovering explicit 3D structures, recent advances on photorealistic view
synthesis have opted to recover an intermediate dense 3D-aware representation (e.g. depth [41,
191], multi-plane images [166, 176, 218], or volume density [112, 126]), followed by neural
rendering techniques [38, 124, 161, 174] to synthesize the target images. In particular, Neural
Radiance Fields (NeRF) [126] have demonstrated its remarkable ability for high-fidelity view
synthesis. NeRF encodes 3D scenes with a neural network mapping 3D point locations to color
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Figure 8.1: Training NeRF requires accurate camera poses for all images. We present BARF
for learning 3D scene representations from imperfect (or even unknown) camera poses by jointly
optimizing for registration and reconstruction.

and volume density. This allows the scenes to be represented with compact memory footprint
without limiting the resolution of synthesized images. The optimization process of the network
is constrained to obey the principles of classical volume rendering [96], making the learned
representation interpretable as a continuous 3D volume density function.

Despite its notable ability for photorealistic view synthesis and 3D scene representation, a
hard prerequisite of NeRF (as well as other view synthesis methods) is accurate camera poses
of the given images, which is typically obtained through auxiliary off-the-shelf algorithms. One
straightforward way to circumvent this limitation is to additionally optimize the pose parameters
with the NeRF model via backpropagation. As later discussed, however, naïve pose optimization
with NeRF is sensitive to initialization. It may lead to suboptimal solutions of the 3D scene
representation, degrading the quality of view synthesis.

In this chapter, we address the problem of training NeRF representations from imperfect
camera poses — the joint problem of reconstructing the 3D scene and registering the camera
poses (Fig. 8.1). We draw inspiration from the success of classical image alignment methods
and establish a theoretical connection, showing that coarse-to-fine registration is also critical to
NeRF. Specifically, we show that positional encoding [180] of input 3D points plays a crucial
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role — as much as it enables fitting to high-frequency functions [170], positional encoding is also
more susceptible to suboptimal registration results. To this end, we present Bundle-Adjusting
NeRF (BARF), a simple yet effective strategy for coarse-to-fine registration on coordinate-based
scene representations. BARF can be regarded as a type of photometric BA [4, 103] using view
synthesis as the proxy objective. Unlike traditional BA, however, BARF can learn the scene
representation from scratch (i.e. from randomly initialized network weights), lifting the reliance
of local registration subprocedures and allowing for more generic applications.

In summary, we present the following contributions:

• We establish a theoretical connection between classical image alignment to joint registration
and reconstruction with Neural Radiance Fields (NeRF).

• We show that susceptibility to noise from positional encoding affects the basin of attraction
for registration, and we present a simple strategy for coarse-to-fine registration on coordinate-
based scene representations.

• Our proposed BARF can successfully recover scene representations from imperfect camera
poses, allowing for applications such as view synthesis and localization of video sequences
from unknown poses.

8.2 Related Work

Structure from motion (SfM) and SLAM. Given a set of input images, Sf M [2, 163, 164, 192]
and SLAM [36, 127, 128, 204] systems aim to recover the 3D structure and the sensor poses
simultaneously. These can be classified into (a) indirect methods that rely on keypoint detection
and matching [27, 127] and (b) direct methods that exploit photometric consistency [4, 37].
Modern pipelines following the indirect route have achieved tremendous success [153]; however,
they often suffer at textureless regions and repetitive patterns, where distinctive keypoints cannot
be reliably detected. Researchers have thus sought to use neural networks to learn discriminative
features directly from data [33, 35, 134].

Direct methods, on the other hand, do not rely on such distinctive keypoints — every pixel
can contribute to maximizing photometric consistency, leading to improved robustness in sparsely
textured environments [187]. They can also be naturally integrated into deep learning frameworks
through image reconstruction losses [182, 209, 217]. Our method BARF lies under the broad
umbrella of direct methods, as BARF learns 3D scene representations from RGB images while
also localizing the respective cameras. However, unlike classical Sf M and SLAM that represent
3D structures with explicit geometry (e.g. point clouds), BARF encodes the scenes as coordinate-
based representations with neural networks.

View synthesis. Given a set of posed images, view synthesis attempts to simulate how a scene
would look like from novel viewpoints [18, 63, 97, 169]. The task has been closely tied to
3D reconstruction since its introduction [28, 61, 224]. Researchers have investigated blending
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pixel colors based on depth maps [17] or leveraging proxy geometry to warp and composite the
synthesized image [89]. However, since the problem is inherently ill-posed, there are still multiple
restrictions and assumptions on the synthesized viewpoints.

State-of-the-art methods have capitalized on neural networks to learn both the scene geometry
and statistical priors from data. Various representations have been explored in this direction,
e.g. depth [41, 149, 150, 191], layered depth [155, 179], multi-plane images [166, 176, 218],
volume density [112, 126], and mesh sheets [66]. Unfortunately, these view synthesis methods
still require the camera poses to be known a priori, largely limiting their applications in practice.
In contrast, our method BARF is able to effectively learn 3D representations that encodes the
underlying scene geometry from imperfect or even unknown camera poses.

Neural Radiance Fields (NeRF). Recently, Mildenhall et al. [126] proposed NeRF to synthe-
size novel views of static, complex scenes from a set of posed input images. The key idea is to
model the continuous radiance field of a scene with a multi-layer perceptron (MLP), followed
by differentiable volume rendering to synthesize the images and backpropagate the photometric
errors. NeRF has drawn wide attention across the vision community [130, 138, 144, 208, 212]
due to its simplicity and extraordinary performance. It has also been extended on many fronts,
e.g. reflectance modeling for photorealistic relighting [14, 167] and dynamic scene modeling that
integrates the motion of the world [98, 141, 196]. Recent works have also sought to exploit a
large corpus of data to pretrain the MLP, enabling the ability to infer the radiance field from a
single image [46, 146, 154, 210].

While impressive results have been achieved by the above NeRF-based models, they have
a common drawback — the requirement of posed images. Our proposed BARF allows us to
circumvent such requirement. We show that with a simple coarse-to-fine bundle adjustment
technique, we can recover from imperfect camera poses (including unknown poses of video
sequences) and learn the NeRF representation simultaneously. Concurrent to our work, NeRF--
[190] introduced an empirical, two-stage pipeline to estimate unknown camera poses. Our method
BARF, in contrast, is motivated by mathematical insights and can recover the camera poses within
a single course of optimization, allowing for direct utilities for various NeRF extensions.

8.3 Approach

We unfold this chapter by motivating with the simpler 2D case of classical image alignment as
an example. Then we discuss how the same concept is also applicable to the 3D case, giving
inspiration to our proposed BARF.
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8.3.1 Planar Image Alignment (2D)

Let x ∈ R2 be the 2D pixel coordinates and I : R2 → R3 be the imaging function. Image
alignment aims to find the relative geometric transformation minimizing the photometric error
between two images I1 and I2. We can formulate the problem with a synthesis-based objective:

min
p

∑
x

‖I1(W(x; p))− I2(x)‖2
2 , (8.1)

whereW : R2 → R2 is the warp function parametrized by p ∈ RP (with P as the dimensionality).
As this is a nonlinear problem, gradient-based optimization is the method of choice: given the
current warp state p, warp updates ∆p are iteratively solved for and updated to the solution via
p← p + ∆p. Here, ∆p can be written in a generic form of

∆p = −A(x; p)
∑

x

J(x; p)>
(
I1(W(x; p))− I2(x)

)
, (8.2)

where J ∈ R3×P is termed the steepest descent image, and A is a generic transformation
which depends on the choice of the optimization algorithm. The seminal Lucas-Kanade al-
gorithm [116] approaches the problem using Gauss-Newton optimization, i.e. A(x; p) =
(
∑

x J(x; p)>J(x; p))−1; alternatively, one could also choose first-order optimizers such as
(stochastic) gradient descent which can be more naturally incorporated into modern deep learning
frameworks, where A would correspond to a scalar learning rate.

The steepest descent image J can be expanded as

J(x; p) =
∂I1(W(x; p))

∂W(x; p)

∂W(x; p)

∂p
, (8.3)

where ∂W(x;p)
∂p

∈ R2×P is the warp Jacobian constraining the pixel displacements with respect
to the predefined warp. At the heart of gradient-based registration are the image gradients
∂I(x)
∂x
∈ R3×2 modeling a local per-pixel linear relationship between appearance and spatial

displacements, which is classically estimated via finite differencing. The overall warp update ∆p
can be more effectively estimated from pixel value differences if the per-pixel predictions are
coherent (Fig. 8.2), i.e. the image signals are smooth. However, as natural images are typically
complex signals, gradient-based registration on raw images is susceptible to suboptimal solutions
if poorly initialized. Therefore, coarse-to-fine strategies have been practiced by blurring the images
at earlier stages of registration, effectively widening the basin of attraction and smoothening the
alignment landscape.

Images as neural networks. An alternative formulation of the problem is to learn a coordinate-
based image representation with a neural network while also solving for the warp p. Writing the
network as f : R2 → R3 and denoting Θ as its parameters, one can instead choose to optimize
the objective

min
p,Θ

∑
x

(
‖f(x; Θ)− I1(x)‖2

2

+ ‖f(W(x; p); Θ)− I2(x)‖2
2

)
, (8.4)
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(a) smooth signal

(b) complex signal

Figure 8.2: Predicting alignment from signal differences. Consider two 1D signals where
f1(x) = f2(x+c) differs by an offset c. When solving for alignment, smoother signals can predict
more coherent displacements than complex signals, which easily results in suboptimal alignment.

or alternatively, one may choose to solve for warp parameters p1 and p2 respectively for both
images I1 and I2 through

min
p1,p2,Θ

M∑
i=1

∑
x

‖f(W(x; pi); Θ)− Ii(x)‖2
2 , (8.5)

where M = 2 is the number of images. Albeit similar to (8.1), the image gradients become
the analytical Jacobian of the network ∂f(x)

∂x
instead of numerical estimation. By manipulating

the network f , this also enables more principled control of the signal smoothness for alignment
without having to rely on heuristic blurring on images, making these forms generalizable to 3D
scene representations (Sec. 8.3.2).

8.3.2 Neural Radiance Fields (3D)

We discuss the 3D case of recovering the 3D scene representation from Neural Radiance Fields
(NeRF) [126] jointly with the camera poses. To signify the analogy to Sec. 8.3.1, we deliberately
overload the notations x as 3D points,W as camera pose transformations, and f as the network.

NeRF encodes a 3D scene as a continuous 3D representation using an MLP f : R3 → R4

to predict the RGB color c ∈ R3 and volume density σ ∈ R for each input 3D point x ∈ R3.
This can be summarized as y = [c;σ]> = f(x; Θ), where Θ is the network parameters1. NeRF
assumes an emission-only model, i.e. the rendered color of a pixel is dependent only on the
emitted radiance of 3D points along the viewing ray, without considering external lighting factors.
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We first formulate the rendering operation of NeRF in the camera view space. Given pixel
coordinates u ∈ R2 and denoting its homogeneous coordinates as ū = [u; 1]> ∈ R3, we can
express a 3D point xi along the viewing ray at depth zi as xi = ziū. The RGB color Î at pixel
location u is extracted by volume rendering via

Î(u) =

∫ zfar

znear

T (u, z)σ(zū)c(zū)dz , (8.6)

where T (u, z) = exp
(
−
∫ z
znear

σ(z′ū)dz′
)
, and znear and zfar are bounds on the depth range of

interest. We refer our readers to Levoy [96] and Mildenhall et al. [126] for a more detailed
treatment on volume rendering. In practice, the above integral formulations are approximated
numerically via quadrature on discrete N points at depth {z1, . . . , zN} sampled along the ray.
This involves N evaluations of the network f , whose output {y1, . . . ,yN} are further composited
through volume rendering. We can summarize the ray compositing function as g : R4N → R3 and
rewrite Î(u) as Î(u) = g (y1, . . . ,yN). Note that g is differentiable but deterministic, i.e. there
are no learnable parameters associated.

Under a 6-DoF camera pose parametrized by p ∈ R6, a 3D point x in the camera view space
can be transformed to the 3D world coordinates through a 3D rigid transformationW : R3 → R3.
Therefore, the synthesized RGB value at pixel u becomes a function of the camera pose p as

Î(u; p) = g
(
f(W(z1ū; p); Θ), . . . , f(W(zN ū; p); Θ)

)
. (8.7)

Given M images {Ii}Mi=1, our goal is to optimize NeRF and the camera poses {pi}Mi=1 over the
synthesis-based objective

min
p1,...,pM ,Θ

M∑
i=1

∑
u

∥∥Î(u; pi,Θ)− Ii(u)
∥∥2

2
, (8.8)

where Î also depends on the network parameters Θ.

One may notice the analogy between the synthesis-based objectives of 2D image align-
ment (8.5) and NeRF (8.8). Similarly, we can also derive the “steepest descent image” as

J(u; p) =
N∑
i=1

∂g(y1, . . . ,yN)

∂yi

∂yi(p)

∂xi(p)

∂W(ziū; p)

∂p
, (8.9)

which is formed via backpropagation in practice. The linearization (8.9) is also analogous to
the 2D case of (8.3), where the Jacobian of the network ∂y

∂x
= ∂f(x)

∂x
linearly relates the change

of color c and volume density σ with 3D spatial displacements. To solve for effective camera
pose updates ∆p through backpropagation, it is also desirable to control the smoothness of f for
predicting coherent geometric displacements from the sampled 3D points {x1, . . . ,xN}.

1In practice, f is also conditioned on the viewing direction [126] for modeling view-dependent effects, which we
omit here for simplicity.
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8.3.3 On Positional Encoding and Registration

The key of enabling NeRF to synthesize views with high fidelity is positional encoding [180],
a deterministic mapping of input 3D coordinates x to higher dimensions of different sinusoidal
frequency bases2. We denote γ : R3 → R3+6L as the positional encoding with L frequency bases,
defined as

γ(x) =
[
x, γ0(x), γ1(x), . . . , γL−1(x)

]
∈ R3+6L , (8.10)

where the k-th frequency encoding γk(x) is

γk(x) =
[

cos(2kπx), sin(2kπx)
]
∈ R6 , (8.11)

with the sinusoidal functions operating coordinate-wise. The special case of L = 0 makes
γ an identity mapping function. The network f is thus a composition of f(x) = f ′ ◦ γ(x),
where f ′ is the subsequent learnable MLP. Positional encoding allows coordinate-based neural
networks, which are typically bandwidth limited, to represent signals of higher frequency with
faster convergence behaviors [170].

The Jacobian of the k-th positional encoding γk is

∂γk(x)

∂x
= 2kπ ·

[
− sin(2kπx), cos(2kπx)

]
, (8.12)

which amplifies the gradient signals from the MLP f ′ by 2kπ with its direction changing at the
same frequency. This makes it difficult to predict effective updates ∆p, since gradient signals
from the sampled 3D points are incoherent (in terms of both direction and magnitude) and can
easily cancel out each other. Therefore, naïvely applying positional encoding can become a
double-edged sword to NeRF for the task of joint registration and reconstruction.

8.3.4 Bundle-Adjusting Neural Radiance Fields

We describe our proposed BARF, a simple yet effective strategy for coarse-to-fine registration for
NeRF. The key idea is to apply a smooth mask on the encoding at different frequency bands (from
low to high) over the course of optimization, which acts like a dynamic low-pass filter. Inspired by
recent work of learning coarse-to-fine deformation flow fields [138], we weigh the k-th frequency
component of γ as

γk(x;α) = wk(α) ·
[

cos(2kπx), sin(2kπx)
]
, (8.13)

where the weight wk is defined as

wk(α) =


0 if α < k
1− cos((α− k)π)

2
if 0 ≤ α− k < 1

1 if α− k ≥ 1

(8.14)

2Although we focus on 3D input coordinates here, positional encoding is also directly applicable to 2D image
coordinates in Sec. 8.3.1 as well.
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and α ∈ [0, L] is a controllable parameter proportional to the optimization progress. The Jacobian
of γk thus becomes

∂γk(x;α)

∂x
= wk(α) · 2kπ ·

[
− sin(2kπx), cos(2kπx)

]
. (8.15)

When wk(α) = 0, the contribution to the gradient from the k-th (and higher) frequency component
is nullified.

Starting from the raw 3D input x (α = 0), we gradually activate the encodings of higher
frequency bands until full positional encoding is enabled (α = L), equivalent to the original NeRF
model. This allows BARF to discover the correct registration with an initially smooth signal and
later shift focus to learning a high-fidelity scene representation.

8.4 Experiments

We validate the effectiveness of our proposed BARF with a simple experiment of 2D planar
image alignment, and show how the same coarse-to-fine registration strategy can be generalized
to NeRF [126] for learning 3D scene representations.

8.4.1 Planar Image Alignment (2D)

We choose a representative image from ImageNet [31], shown in Fig. 8.3. Given M = 5
patches from the image generated with homography perturbations (Fig. 8.3(a)), we aim to find
the homography warp parameters p ∈ R8 for each patch (Fig. 8.3(b)) while also learning the
neural representation of the entire image with a network f by optimizing (8.5). We initialize all
M patches with a center crop (Fig. 8.3(c)), and we anchor the warp of the first patch as identity so
the recovered image would be implicitly aligned to the raw image. We parametrize homography
warps with the sl(3) Lie algebra.

Experimental settings. We investigate how positional encoding impacts this problem by com-
paring networks with naïve (full) positional encoding and without any encoding. We use a simple
ReLU MLP for f with four 256-dimensional hidden units, and we use the Adam optimizer [85] to
optimize both the network weights and the warp parameters for 5000 iterations with a learning rate
of 0.001. For BARF, we linearly adjust α for the first 2000 iterations and activate all frequency
bands (L = 8) for the remaining iterations.

Results. We visualize the registration results in Fig. 8.4. Alignment with full positional encoding
results in suboptimal registration with ghostly artifacts in the recovered image representation. On
the other hand, alignment without positional encoding achieves decent registration results, but
cannot recover the image with sufficient fidelity. BARF discovers the precise geometric warps with
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(c) ground-truth warps(b) initialization

(a) image patches given for optimization 

Figure 8.3: Given image patches color-coded in (a), we aim to recover the alignment and the
neural representation of the entire image, with the patches initialized to center crops shown in (b)
and the corresponding ground-truth warps shown in (c).

positional encoding sl(3) error patch PSNR

naïve (full) 0.2949 23.41
without 0.0641 24.72

BARF (coarse-to-fine) 0.0096 35.30

Table 8.1: Quantitative results of planar image alignment. BARF optimizes for more accurate
alignment and patch reconstruction compared to the baselines.

the image representation optimized with high fidelity, quantitatively reflected in Table 8.1. This
experiment demonstrates the general advantage of BARF for coordinate-based representations.

8.4.2 NeRF (3D): Synthetic Objects

We investigate the problem of learning 3D scene representations with Neural Radiance Fields
(NeRF) [126] from imperfect camera poses. We experiment with the 8 synthetic object-centric
scenes provided by Mildenhall et al. [126], which consists of M = 100 rendered images with
ground-truth camera poses for each scene for training.

Experimental settings. We parametrize the camera poses p with the se(3) Lie algebra and
assume known intrinsics. For each scene, we synthetically perturb the camera poses with additive
noise δp ∼ N (0, 0.15I), which corresponds to a standard deviation of 14.9° in rotation and 0.26
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(a) naïve pos. enc. (b) w/o pos. enc. (c) BARF

Figure 8.4: Qualitative results of the planar image alignment experiment. We visualize the
optimized warps (top row), the patch reconstructions in corresponding colors (middle row), and
recovered image representation from f (bottom row). BARF is able to recover accurate alignment
and high-fidelity image reconstruction, while baselines result in suboptimal alignment with naïve
positional encoding and blurry reconstruction without any encoding. Best viewed in color.

in translational magnitude (Fig. 8.5(a)). We optimize the objective in (8.8) jointly for the scene
representation and the camera poses. We evaluate BARF mainly against the original NeRF model
with naïve (full) positional encoding; for completeness, we also compare with the same model
without positional encoding.

Implementation details. We follow the architectural settings from the original NeRF [126]
with some modifications. We train a single MLP with 128 hidden units in each layer and without
additional hierarchical sampling for simplicity. We resize the images to 400 × 400 pixels and
randomly sample 1024 pixel rays at each optimization step. We choose N = 128 sample for
numerical integration along each ray, and we use the softplus activation on the volume density
output σ for improved stability. We use the Adam optimizer and train all models for 2000 epochs,
with a learning rate of 5×10−4 exponentially decaying to 1×10−4 for the network f and 1×10−3

decaying to 1×10−5 for the camera poses p. For BARF, we linearly adjust α from epoch 400 to
800 and activate all frequency bands (up to L = 10) subsequently.
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(b) full positional encoding (c) BARF (ours)

(a) initial camera poses

perturbed/optimized 
camera poses

ground-truth 
camera poses

translational error

Figure 8.5: Visual comparison of the initial and optimized camera poses (Procrustes aligned) for
the chair scene. BARF successfully realigns all the camera frames while NeRF naïve positional
encoding gets stuck at suboptimal solutions.

Evaluation criteria. We measure the performance in two aspects: pose error for registration
and view synthesis quality for the scene representation. Since both the scene and camera poses
are variable up to a 3D similarity transformation, we evaluate the quality of registration by pre-
aligning the optimized poses to the ground truth with Procrustes analysis on the camera locations.
For evaluating view synthesis, we run an additional step of test-time photometric optimization on
the trained models [103, 208] to factor out the pose error that may contaminate the view synthesis
quality. We report the average rotation and translation errors for pose and PSNR, SSIM and
LPIPS [213] for view synthesis.

Results. We visualize the results in Fig. 8.6 and report the quantitative results in Table 8.2.
BARF takes the best of both worlds of recovering the neural scene representation with the camera
pose successfully registered, while naïve NeRF with full positional encoding finds suboptimal
solutions. Fig. 8.5 shows that BARF can achieve near-perfect registration for the synthetic scenes.
Although the NeRF model without positional encoding can also successfully recover alignment,

134



full pos. enc. w/o pos. enc. BARF (ours) reference NeRFground truth

lego

ficus

Figure 8.6: Qualitative results of NeRF on synthetic scenes. We visualize the image synthesis
(top) and the expected depth through ray compositing (bottom). BARF achieves comparable
synthesis quality to the reference NeRF (trained under perfect camera poses), while full positional
encoding results in suboptimal registration, leading to synthesis artifacts.

Scene

Camera pose registration View synthesis quality
Rotation (°) ↓ Translation ↓ PSNR ↑ SSIM ↑ LPIPS ↓

full w/o
BARF

full w/o
BARF

full w/o
BARF

ref. full w/o
BARF

ref. full w/o
BARF

ref.
pos.enc. pos.enc. pos.enc. pos.enc. pos.enc. pos.enc. NeRF pos.enc. pos.enc. NeRF pos.enc. pos.enc. NeRF

Chair 1.382 1.034 0.115 5.921 0.554 0.679 28.68 28.93 30.25 30.42 0.931 0.929 0.943 0.948 0.073 0.083 0.058 0.060
Drums 2.944 0.071 0.062 8.556 0.335 0.434 21.58 22.65 23.12 23.42 0.855 0.873 0.884 0.889 0.149 0.155 0.128 0.120
Ficus 4.861 0.139 0.095 8.870 0.632 0.583 21.34 23.64 25.33 25.61 0.866 0.898 0.922 0.926 0.161 0.104 0.078 0.116

Hotdog 0.845 0.235 0.273 1.702 1.184 1.600 32.15 32.43 32.97 33.37 0.956 0.957 0.961 0.963 0.058 0.054 0.053 0.047
Lego 0.648 0.112 0.069 2.432 0.408 0.335 26.85 25.32 27.20 27.70 0.907 0.859 0.906 0.920 0.079 0.136 0.072 0.064

Materials 2.712 0.049 0.541 7.991 0.313 1.433 21.34 25.52 26.07 27.43 0.850 0.899 0.910 0.930 0.153 0.099 0.087 0.070
Mic 5.283 0.078 0.065 12.227 0.437 0.314 20.88 30.14 30.62 31.21 0.884 0.964 0.965 0.968 0.201 0.060 0.056 0.052
Ship 4.274 0.156 0.642 3.827 0.540 1.519 25.10 26.02 26.61 27.14 0.806 0.818 0.829 0.839 0.196 0.200 0.164 0.154

Mean 2.869 0.234 0.233 6.441 0.550 0.862 24.74 26.83 27.77 28.29 0.882 0.900 0.915 0.923 0.134 0.111 0.087 0.085

Table 8.2: Quantitative results of NeRF on synthetic scenes. BARF successfully optimizes for
camera registration (with less than 1° rotation error) while still consistently achieving high-quality
view synthesis that is comparable to the reference NeRF models (trained under perfect camera
poses). Translation errors are scaled by 100.

the learned scene representations (and thus the synthesized images) lack the reconstruction fidelity.
As a reference, we also compare the view synthesis quality against standard NeRF models trained
under ground-truth poses, showing that BARF can achieve comparable view synthesis quality in
all metrics, albeit initialized from imperfect camera poses.

8.4.3 NeRF (3D): Real-World Scenes

We investigate the challenging problem of learning neural 3D representations with NeRF on
real-world scenes, where the camera poses are unknown. We consider the LLFF dataset [125],
which consists of 8 forward-facing scenes with RGB images captured by hand-held cameras.
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Figure 8.7: Qualitative results of NeRF on real-world scenes from unknown camera poses.
Compared to a reference NeRF model trained with camera poses provided from Sf M [153], BARF
can effectively optimize for the poses jointly with the scene representation. NeRF models with
full positional encoding diverge to incorrect localization and hence poor synthesis quality.

Experimental settings. We parametrize the camera poses p with se(3) following Sec. 8.4.2 but
initialize all cameras with the identity transformation, i.e. pi = 0 ∀i. We assume known camera
intrinsics (provided by the dataset). We compare against the original NeRF model with naïve
positional encoding, and we use the same evaluation criteria described in Sec. 8.4.2. However,
we note that the camera poses provided in LLFF are also estimations from Sf M packages [153];
therefore, the pose evaluation is at most an indication of how well BARF agrees with classical
geometric pose estimation.

Implementation details. We follow the same the architectural settings from the original
NeRF et al. [126] and resize the images to 480 × 640 pixels. We train all models for 10000
epochs, with a learning rate of 1×10−3 for the network f and 3×10−3 for the pose p, both
decaying to 1×10−5. We linearly adjust α for BARF from epoch 2000 to 4000 and activate all
frequency bands (up to L = 10) subsequently.

Results. The quantitative results (Table 8.3) show that the recovered camera poses from BARF
highly agrees with those estimated from off-the-shelf Sf M methods (visualized in Fig. 8.8),
demonstrating the ability of BARF to localize from scratch. Furthermore, BARF can successfully
recover the 3D scene representation with high fidelity (Fig. 8.7). In contrast, NeRF with naïve
positional encoding diverge to incorrect camera poses, which in turn results in poor view synthesis.
This highlights the effectiveness of BARF for coarse-to-fine joint registration and reconstruction.
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(a) full pos. enc. (b) BARF (ours)

top-down (aerial) view

frontal-facing view COLMAP (SfM)
NeRF / BARF

Figure 8.8: Visualization of optimized camera poses from the fern scene (Procrustes aligned).
Results from BARF highly agrees with Sf M, whereas the baseline poses are suboptimal.

Scene

Camera pose registration View synthesis quality
Rotation (°) ↓ Translation ↓ PSNR ↑ SSIM ↑ LPIPS ↓

full
BARF

full
BARF

full
BARF

ref. full
BARF

ref. full
BARF

ref.
pos.enc. pos.enc. pos.enc. NeRF pos.enc. NeRF pos.enc. NeRF

Fern 59.081 0.982 20.081 0.479 10.68 22.82 24.03 0.233 0.658 0.734 0.857 0.385 0.273
Flower 28.076 3.205 5.434 0.735 11.57 20.30 22.94 0.203 0.555 0.690 0.851 0.325 0.207
Fortress 149.785 1.993 46.019 0.434 14.08 27.01 27.10 0.363 0.752 0.806 0.761 0.234 0.133
Horns 177.604 2.424 64.518 0.264 9.87 20.07 22.15 0.187 0.669 0.743 0.804 0.374 0.272
Leaves 41.954 1.832 7.808 0.419 7.93 17.06 15.90 0.079 0.420 0.349 0.750 0.432 0.487
Orchids 31.386 2.095 29.613 0.666 9.08 18.03 19.13 0.090 0.478 0.587 0.759 0.397 0.269
Room 49.661 1.275 29.342 0.195 10.84 28.50 31.06 0.421 0.893 0.936 0.856 0.176 0.099
T-rex 165.731 1.913 43.226 0.956 7.37 21.90 23.68 0.288 0.741 0.816 0.948 0.248 0.146

Mean 87.910 1.965 30.755 0.519 10.18 21.96 23.25 0.233 0.646 0.708 0.823 0.321 0.236

Table 8.3: Quantitative results of NeRF on the LLFF forward-facing scenes from unknown
camera poses. BARF can optimize for accurate camera poses (with an average rotation error of
2°) and high-fidelity scene representations, enabling novel view synthesis with comparable quality
to reference NeRF model trained under Sf M poses. Translation errors are scaled by 100.

8.5 Conclusion

We present Bundle-Adjusting Neural Radiance Fields (BARF), a simple yet effective strategy for
training NeRF from imperfect camera poses. By establishing a theoretical connection to classical
image alignment, we demonstrate that coarse-to-fine registration is necessary for joint registration
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Figure 8.9: Visualization of the basin of attraction. (a) We aim to align a center box (yellow) to a
target patch (red) at every possible location within the raw image. For each target patch, we jointly
optimize f and the translational warp p to analyze the final warp error and the image reconstruction
loss. (b) The target offsets forms a color-coded map, where green indicates horizontal offsets
and red indicates vertical offsets. The above example corresponds to the highlighted pixel. (c)
The optimized warp parameters and (d) the warp error for every target patch location, where the
white contours highlight the offset error threshold of 0.5 pixels. BARF effectively widens the
basin of attraction (range of successful alignment) with a smoother landscape compared to naïve
positional encoding. (e) Without positional encoding, f has limited capacity of representing the
image details, resulting in nonzero image errors despite the registration being successful as well.

and reconstruction with coordinate-based scene representations. Our experiments show that BARF
can effectively learn the 3D scene representations from scratch and resolve large camera pose
misalignment at the same time.

Despite the intriguing results at the current stage, BARF has similar limitations to the original
NeRF formulation [126] (e.g. slow optimization and rendering, rigidity assumption, sensitivity
to dense 3D sampling), as well as reliance on heuristic coarse-to-fine scheduling strategies.
Nevertheless, since BARF keeps a close formulation to NeRF, many of the latest advances on
improving NeRF are potentially transferable to BARF as well. We believe BARF opens up
exciting avenues for rethinking visual localization for Sf M/SLAM systems and self-supervised
dense 3D reconstruction frameworks using view synthesis as a proxy objective.

8.A Visualizing the Basin of Attraction

The planar image alignment setting allows us to analyze how positional encoding affects the basin
of attraction. We use the same image in Fig. 8.3 and consider the simpler case of aligning two
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image patches differing by an offset. We use a translational warp p ∈ R2 on a square box whose
size is 1/3 of the raw image height and initialized to the raw center. We aim to register the center
box to a single target patch of the same size shifted by some offset, shown in Fig. 8.9(a). We
optimize the image neural network f with the objective in (8.4), where I1 is the center patch and
I2 is the target patch, and investigate the convergence behavior of translational alignment as a
function of target offsets. We search over the entire pixel grid to as far as where the target patch
has no overlapping region with the initial center box.

We visualize the results in Fig. 8.9. Naïve positional encoding results in a more nonlinear
alignment landscape and a smaller basin of attraction, while not using positional encoding
sacrifices the reconstruction quality due to the limited representability of the network f . In
contrast, BARF can widen the basin of attraction while reconstructing the image representation
with high fidelity. This also justifies the importance of coarse-to-fine registration for NeRF.

8.B Additional NeRF Details & Results

We provide more details and results from our NeRF experiments in this section (for real-world
scenes in particular).

8.B.1 Evaluation Details

As mentioned in the main chapter, the optimized solutions of the 3D scenes and camera poses
are up to a 3D similarity transformation. Therefore, we evaluate the quality of registration by
pre-aligning the optimized poses to the reference poses, which are the ground truth poses for the
synthetic objects (Sec. 8.4.2) and pose estimation computed from Sf M packages [153] for the
real-world scenes (Sec. 8.4.3).

We use Procrustes analysis on the camera locations for aligning the coordinate systems. The
algorithm details are described in Alg. 1. We write the reference poses {[Ri, ti]}Mi=1 and the
optimized poses {[R̂i, t̂i]}Mi=1 in the form of camera extrinsic matrices, and the aligned poses
can be written as {[R̂′i, t̂′i]}Mi=1 = PREALIGN({[Ri, ti]}Mi=1, {[R̂i, t̂i]}Mi=1). After the cameras are
Procrustes-aligned, we apply the relative rotation (solved for via the Procrustes analysis process)
to account for rotational differences. We measure the rotation error between the Sf M poses and
the aligned poses from NeRF/BARF by the angular distance as

∆θi = cos−1
(
2〈qi, q̂′i〉2 − 1

)
, i = {1, . . . ,M} , (8.16)

where qi and q̂′i are the quaternion representation of Ri and R̂′i (the rotation of the Procrusted-
aligned poses) respectively and 〈·, ·〉 is the quaternion inner product. For additional clarity, we
provide a more detailed visualization of the optimized camera poses in Fig. 8.10 (for LLFF).

To evaluate the quality of novel view synthesis while being minimally affected by camera
misalignment, we transform the test views (provided by Mildenhall et al. [125]) to the coordinate
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Algorithm 1: Pre-align camera poses for evaluation

1 Function PREALIGN({[Ri, ti]}Mi=1, {[R̂i, t̂i]}Mi=1):
Input : reference poses {[Ri, ti]}Mi=1,

optimized poses {[R̂i, t̂i]}Mi=1

Output : optimized poses {[R̂′i, t̂′i]}Mi=1 aligned
to the reference poses

2 for i = {1, . . . ,M} do
3 oi = −R>i ti

4 ôi = −R̂>i t̂i
5 end
6 s, ŝ, t, t̂,R = PROCRUSTES({oi}Mi=1, {ôi}Mi=1)
7 for i = {1, . . . ,M} do
8 ô′i = sR

(
1
ŝ
(ôi − t̂)

)
+ t

9 R̂′i = R̂iR
>

10 t̂′i = −R̂′>i ô′i
11 end
12 return {[R̂′i, t̂′i]}Mi=1

13 end

14 Function PROCRUSTES({oi}Mi=1, {ôi}Mi=1):
Input : reference camera centers {oi}Mi=1,

optimized camera centers {ôi}Mi=1

Output : scale s, ŝ, translation t, t̂, rotation R

15 t = 1
M

∑M
i=1 oi ∈ R3

16 t̂ = 1
M

∑M
i=1 ôi ∈ R3

17 s =
√

1
M

∑M
i=1 ‖oi − t‖2

2 ∈ R

18 ŝ =
√

1
M

∑M
i=1

∥∥ôi − t̂
∥∥2

2
∈ R

19 X = 1
s

(
[o1, . . . ,oM ]− t1>M

)
∈ R3×M

20 X̂ = 1
ŝ

(
[ô1, . . . , ôM ]− t̂1>M

)
∈ R3×M

21 U,S,V> = SVD(XX̂>)
22 R = UV> ∈ R3×3

23 if det(R) = −1 then
24 multiply last row of R by −1
25 end
26 return s, ŝ, t, t̂, R

27 end
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Figure 8.10: Visualization of the optimized camera poses for the fern scene. The poses for
both the baseline NeRF (with full positional encoding) and BARF are initialized to the identity
transform for all frames. (a) The camera poses of the baseline NeRF get stuck in a suboptimal
solution that does not accurately reflect the actual viewpoints, whereas BARF can effectively
optimize for the underlying poses. (b) We compare the optimized poses to those computed from
Sf M [153] (colored in black), where we align the pose trajectories using Procrustes analysis. The
camera poses optimized by BARF highly agree with those from Sf M, whereas those from the
baseline NeRF cannot be well-aligned with Procrustes analysis. Therefore, there is no systematic
way of finding a reasonable set of corresponding held-out views with respect to the optimized
coordinate system.

system of the optimized poses by applying the scale/rotation/translation from the Procrustes
analysis, as in Alg. 1. The camera trajectories from the baseline NeRF with naïve full positional
encoding exhibits large rotational and translational differences compared to Sf M poses in general.
For this reason, the view synthesis results from the baseline NeRF, whose corresponding test
views are also determined using Procrustes analysis, are far from plausible. Unfortunately, there
is no other systematic way of determining what the corresponding views held out from the Sf M
poses would be in the learned coordinate system. Nevertheless, we provide additional qualitative
results in Fig. 8.11, where the novel views are selected from a training view closest to the average
pose and sampling translational perturbations.

8.B.2 Real-World Scenes (LLFF Dataset)

Dataset. The LLFF dataset [125] consists of 8 forward-facing scenes with RGB images se-
quentially captured by hand-held cameras. In the original NeRF paper [125], the test views were
selected by holding out every 8th frame from the video sequence and training with the remaining
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Fern Flower Fortress Horns Leaves Orchids Room T-rex

split 18 / 2 31 / 3 38 / 4 56 / 6 24 / 2 23 / 2 37 / 4 50 / 5
total 20 34 42 62 26 25 41 55

Table 8.4: Dataset statistics of the train/test splits for the real-world scene (LLFF) experiments,
where we hold out the last 10% frames from each sequences.

Scene

Camera pose registration View synthesis quality
Rotation (°) ↓ Translation ↓ PSNR ↑ SSIM ↑ LPIPS ↓
full

BARF
full

BARF
full

BARF
ref. full

BARF
ref. full

BARF
ref.

pos.enc. pos.enc. pos.enc. NeRF pos.enc. NeRF pos.enc. NeRF

Fern 64.822 1.042 24.035 0.607 10.56 22.40 22.35 0.132 0.645 0.638 1.106 0.404 0.450
Flower 3.265 3.496 0.662 0.776 22.14 21.81 22.83 0.600 0.609 0.650 0.340 0.260 0.287
Fortress 2.882 2.055 1.200 0.463 23.89 25.44 25.14 0.531 0.663 0.626 0.647 0.379 0.489
Horns 6.831 2.328 8.248 0.255 18.73 18.72 21.40 0.556 0.676 0.703 0.494 0.313 0.321
Leaves 11.123 2.546 1.821 0.455 10.28 15.89 17.71 0.093 0.405 0.484 0.864 0.395 0.345
Orchids 32.764 2.482 12.851 0.855 10.31 17.57 17.70 0.074 0.447 0.434 1.057 0.426 0.550
Room 31.344 1.235 20.592 0.249 11.08 28.84 29.26 0.263 0.902 0.894 1.076 0.168 0.192
T-rex 105.177 2.131 42.785 1.107 9.25 22.63 23.43 0.100 0.787 0.812 1.224 0.173 0.154

Mean 32.276 2.164 14.024 0.596 14.53 21.66 22.48 0.294 0.642 0.655 0.851 0.314 0.349

Table 8.5: Quantitative results of NeRF on the LLFF forward-facing scenes from unknown
camera poses, sampling the 3D points in the regular depth space. BARF consistently optimizes
for accurate camera poses (also with an average rotation error of 2°) and enables high-quality
view synthesis, demonstrating the justification of coarse-to-fine registration and that it is agnostic
to the choice of dense 3D point sampling strategies in NeRF. Translation errors are scaled by 100.

frames. Unlike Mildenhall et al. [125], however, we hold out the last 10% of the frames for
evaluation and train with the first 90% frames. This train/test split lifts the assumption that the
held-out views are interpolations of the training views, which allows a more practical simulation
of predicting future viewpoints from previous observations. The statistics of the train/test split for
each scene is provided in Table 8.4.

Depth parametrization. In the main LLFF experiments, we sample N = 128 points along
each ray linearly in the inverse depth (disparity) space, where the lower and upper bounds are
1/znear = 1 and 1/zfar = 0.05 respectively. To analyze the effect of depth parametrization on the
performance of real-world scenes, we run an additional set of the same experiments by sampling
the 3D points in the regular (metric) depth space with the same bounds of znear = 1 and zfar = 20.

We report the quantitative results in Table 8.5. Despite the baseline NeRF (with full positional
encoding) showing considerable improvement in pose registration on certain scenes when sampling
in the regular space, BARF still outperforms the baseline by a large margin in terms of both the
registration and view synthesis quality. This shows that irrespective of the choice of 3D point
sampling strategies, BARF can find a much more desirable solution of joint registration and
reconstruction by utilizing a coarse-to-fine strategy.
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Figure 8.11: Additional novel view synthesis results from the real-world scene experiment (LLFF
dataset). Instead of visualizing the held-out views computed by Procrustes analysis, we show
qualitative results at new viewpoints by sampling camera pose perturbations around the viewpoint
from the training set (closest to the average pose). Note that for this set of qualitative results,
we do not have ground-truth RGB images to compare against. BARF can optimize for scene
representations of much higher quality.
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Chapter 9

Conclusion & Discussions

In this dissertation, we have discussed several learning-based methods for the problems of dense
image registration and dense 3D reconstruction. We briefly summarize this thesis as follows.

In Part I, we have explored learning-based direct methods for image registration. We showed
that structured geometric priors can allow learning registration models more efficiently from
data (Chapter 2), geometric misalignment within an image dataset can be resolved indirectly
through a discriminative objective (Chapter 3), and that spatial alignment of objects can be
discovered via an adversarial objective against an unpaired image dataset (Chapter 4). Direct
image registration establishes dense pixel correspondences between images, and these methods
give hints to application to more sophisticated warp functions, such as 3D geometric shapes for
registering the images together in 3D. Factorizing geometric information from data-driven models
also them to reduce the learnable parameters for improved learning efficiency.

In Part II, we have explored learning-based 3D shape reconstruction methods from image
datasets, without the use of explicit 3D supervision. We showed that generalizable 3D shape
reconstruction can be naively trained from a dataset of multi-view depth images (Chapter 5), and
that 3D shape reconstruction can be trained from single-view static images with neural rendering
to discover semantic correspondences and lifting the ill-posedness of the problem (Chapter 6).
With suitable designs of differentiable/neural rendering, we demonstrated that it is possible to
utilize self-supervised learning techniques to extract 3D geometric information from large-scale
image datasets, serving as a strong learned prior for dense 3D prediction and understanding tasks.

Finally in Part III, we have explored the joint problem of registration and 3D reconstruction,
using neural networks for photometric bundle adjustment on objects and scenes. We showed that
given a video sequence, one can use a neural network pretrained on 3D shapes as a learned shape
prior to reconstruct 3D shapes pixel-aligned to the sequence (Chapter 7), and that one can use a
generic 3D volume rendering prior to solve for a neural 3D scene representation of an arbitrary
scene while also optimizing for the camera poses (Chapter 8). These works echo back to the
lessons from registration that designing the suitable geometric prior is a very powerful tool to
factorize the 3D object and scene geometry out of images and videos in a self-supervised fashion.
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Future work. Despite the remarkable progress we have seen for self-supervised registration
and dense 3D reconstruction, there are still much work that remains to be done. We provide
discussions and potential future research directions below.

• Learning dense 3D reconstruction of dynamic scenes. The works that consist of this
thesis has largely focused on the simpler case of learning registration and reconstruction
from rigid scenes. However, our world is rarely static. In fact, the interesting actions
and events captured by the majority of video sequences are dynamic, mostly centered
around humans in motion and moving objects such as cars in street scenes. Previous works
have strove to reconstruct and understand specifically dynamic humans [78, 80] as well as
small-motion dynamic scenes [98, 138], but would it be possible to recover the dense 3D
geometry for extreme motions as well? Relaxing the rigidity assumption and searching for
a suitable prior to model such dynamic motion would be a interesting future direction.

• Efficient neural 3D representations. Over the past year, coordinate-based scene represen-
tations have emerged as a powerful way of modeling 3D scenes, with NeRF [126] being the
most representative. The volume rendering nature of NeRF, however, is computationally
prohibitive compared to other 3D renderers (e.g. mesh rasterization) due to the requirement
of evaluating dense ray samples. Such coordinate-based representations that implicitly
encode 3D scenes are still inferior in many aspects compared to explicit representations
(e.g. object compositionality and scene expansion), limiting their practicality. Investigating
efficient neural 3D scene representations would also be an interesting line of future work.

• Scaling up self-supervision on visual data. Fully self-supervised learning of 3D recon-
struction is still far from ideal today. One of the most limiting factors is the requirement of
accurate camera poses for multi-view supervision, which are often times difficult to come
by as Sf M methods are not 100% perfect. We believe BARF (Chapter 8) is one step towards
alleviating this constraint. In addition, handling dynamic scenes has been a major challenge
as previously discussed. An alternative future direction would be to consider scaling-up
omni-supervised learning [143]. One idea would be to leverage pretrained models on
existing annotated datasets such as COCO [106] and enforcing multi-view consistency on
video sequences with neural rendering, such that instance segmentation predictions can be
refined. Objects could also potentially be utilized as a cue in turn to refine for more accurate
camera poses. Thinking about scaling up self-supervision on image and video data would
be a critical ingredient towards learning dense 3D reconstruction in the wild.

This dissertation wraps up a series of work for learning 3D registration and reconstruction
from the visual world, but it is by no means the end. In contrast, this opens up many more new
exciting avenues for future investigation. Finally, this also marks the start of my long-term research
goal: to enable the ability of AI systems to be able to truly learn from large-scale visual data
to factorize the 3D geometry from all images and videos, in order to revolutionize downstream
visual recognition and 3D understanding towards true spatial 3D artificial intelligence.
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